下載本文檔
版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、DoingMonteCarloSimulationinMinitabStatisticalSoftwareDoingMonteCarlosimulationsinMinitabStatisticalSoftwareisveryeasy.ThisarticleillustrateshowtouseMinitabforMonteCarlosimulationsusingbothaknownengineeringformulaandaDOEequation.byPaulSheehyandEstonMartzMonteCarlosimulationusesrepeatedrandomsamplingt
2、osimulatedataforagivenmathematicalmodelandevaluatetheoutcome.Thismethodwasinitiallyappliedbackinthe1940s,whenscientistsworkingontheatomicbombusedittocalculatetheprobabilitiesofonefissioninguraniumatomcausingafissionreactioninanother.Withuraniuminshortsupply,therewaslittleroomforexperimentaltrialande
3、rror.Thescientistsdiscoveredthataslongastheycreatedenoughsimulateddata,theycouldcomputereliableprobabilitiesandreducetheamountofuraniumneededfortesting.Today,simulateddataisroutinelyusedinsituationswhereresourcesarelimitedorgatheringrealdatawouldbetooexpensiveorimpractical.ByusingMinitab'sabilit
4、ytoeasilycreaterandomdata,youcanuseMonteCarlosimulationto:SSimulatetherangeofpossibleoutcomestoaidindecision-makingfForecastfinancialresultsorestimateprojecttimelinesuUnderstandthevariabilityinaprocessorsystemFFindproblemswithinaprocessorsystemMManageriskbyunderstandingcost/benefitrelationshipsSteps
5、intheMonteCarloApproachDependingonthenumberoffactorsinvolved,simulationscanbeverycomplex.Butatabasiclevel,allMonteCarlosimulationshavefoursimplesteps:1. IdentifytheTransferEquationTodoaMonteCarlosimulation,youneedaquantitativemodelofthebusinessactivity,plan,orprocessyouwishtoexplore.Themathematicale
6、xpressionofyourprocessiscalledthetransferequation."Thismaybeaknownengineeringorbusinessformula,oritmaybebasedonamodelcreatedfromadesignedexperiment(DOE)orregressionanalysis.2. DefinetheInputParametersForeachfactorinyourtransferequation,determinehowitsdataaredistributed.Someinputsmayfollowthenor
7、maldistribution,whileothersfollowatriangularoruniformdistribution.Youthenneedtodeterminedistributionparametersforeachinput.Forinstance,youwouldneedtospecifythemeanandstandarddeviationforinputsthatfollowanormaldistribution.3. CreateRandomDataTodovalidsimulation,youmustcreateaverylarge,randomdatasetfo
8、reachinputsomethingontheorder100,000instances.Theserandomdatapointssimulatethevaluesthatwouldbeseenoveralongperiodforeachinput.Minitabcaneasilycreaterandomdatathatfollowalmostanydistributionyouarelikelytoencounter.4. SimulateandAnalyzeProcessOutputWiththesimulateddatainplace,youcanuseyourtransferequ
9、ationtocalculatesimulatedoutcomes.Runningalargeenoughquantityofsimulatedinputdatathroughyourmodelwillgiveyouareliableindicationofwhattheprocesswilloutputovertime,giventheanticipatedvariationintheinputs.ThosearethestepsanyMonteCarlosimulationneedstofollow.Here'showtoapplytheminMinitab.MonteCarloU
10、singaKnownEngineeringFormulaAmanufacturingcompanyneedstoevaluatethedesignofaproposedproduct:asmallpistonpumpthatmustpump12mloffluidperminute.Youwanttoestimatetheprobableperformanceoverthousandsofpumps,givennaturalvariationinpistondiameter(D),strokelength(L),andstrokesperminute(RPM).Ideally,thepumpfl
11、owacrossthousandsofpumpswillhaveastandarddeviationnogreaterthan0.2ml.Step1:IdentifytheTransferEquationThefirststepindoingaMonteCarlosimulationistodeterminethetransferequation.Inthiscase,youcansimplyuseanestablishedengineeringformulathatmeasurespumpflow:Flow(inml)=MD/2)2?L?RPMStep2:DefinetheInputPara
12、metersNowyoumustdefinethedistributionandparametersofeachinputusedinthetransferequation.Thepump'spistondiameterandstrokelengthareknown,butyoumustcalculatethestrokes-per-minute(RPM)neededtoattainthedesired12ml/minuteflowrate.Volumepumpedperstrokeisgivenbythisequation:KD/2)2*LGivenD=0.8andL=2.5,eac
13、hstrokedisplaces1.256ml.Sotoachieveaflowof12ml/minutetheRPMis9.549.Basedontheperformanceofotherpumpsyourfacilityhasmanufactured,youcansaythatpistondiameterisnormallydistributedwithameanof0.8cmandastandarddeviationof0.003cm.Strokelengthisnormallydistributedwithameanof2.5cmandastandarddeviationof0.15c
14、m.Finally,strokesperminuteisnormallydistributedwithameanof9.549RPMandastandarddeviationof0.17RPM.Step3:CreateRandomDataNowyou'rereadytosetupthesimulationinMinitab.WithMinitabyoucaninstantaneouslycreate100,000rowsofsimulateddata.Startingwiththesimulatedpistondiameterdata,chooseCalc>RandomData&
15、gt;Normal.Inthedialogbox,enter100,000inNumberofrowsofdatatogenerate,andenterD”asthecolumninwhichtostorethedata.Enterthemeanandstandarddeviationforpistondiameterintheappropriatefields.PressOKtopopulatetheworksheetwith100,000datapointsrandomlysampledfromthespecifiednormaldistribution.1Thensimplyrepeat
16、thisprocessforStrokeLength(L)andStrokesperMinute(RPM).Step4:SimulateandAnalyzeProcessOutputNowcreateafourthcolumnintheworksheet,Flow,toholdtheresultsofyourprocessoutputcalculations.Withtherandomlygeneratedinput data in place, you can set up Minitabs calculator to calculate the output and store it in
17、 the Flow column. Go toCalc > Calculatorandsetuptheflowequationlikethis:and select the Flow column. Minitab willMinitabwillquicklycalculatetheoutputforeachrowofsimulateddata.Nowyou'rereadytolookattheresults.SelectStat>BasicStatistics>GraphicalSummarygenerateagraphicalsummarythatincludes
18、fourgraphs:ahistogramofdatawithanoverlaidnormalcurve,boxplot,andconfidenceintervalsforthemeanandthemedian.ThegraphicalsummaryalsodisplaysAnderson-DarlingNormalityTestresults,descriptivestatistics,andconfidenceintervalsforthemean,median,andstandarddeviation.5$5% Confkence Interval*NodtaHh 11g urn119W
19、12mnmn MQs the powerThegraphicalsummaryofyourMonteCarlosimulationoutputwilllooklikethis:SummaryforFlowAnderson-DttrtmghtormagTea:A-SQU4n«d2.MH«n1?Varwcfl0.573SAmmesOCMISMOKwtwfDm11339w10000aHlwmrn8,882I 就®ar琬e11A91Median1L995和1251115如95%GorrMenceIrwenrWlferM«n11,999U.D09第咻SiAdent
20、*MedianII 湖L2.OO295%ConM«nc«InurvalfarStiDwvJSJ0.760Fortherandomdatageneratedtowritethisarticle,themeanflowrateis12.004basedon100,000samples.Onaverage,weareontarget,butthesmallestvaluewas8.882andthelargestwas15.594.That'squitearange.Thetransmittedvariation(ofallcomponents)resultsinasta
21、ndarddeviationof0.757ml,farexceedingthe0.2mltarget.Also,weseethatthe0.2mltargetfallsoutsideoftheconfidenceintervalforthestandarddeviation.Itlookslikethispumpdesignexhibitstoomuchvariationandneedstobefurtherrefinedbeforeitgoesintoproduction;MonteCarlosimulationwithMinitabletusfindthatoutwithoutincurr
22、ingtheexpenseofmanufacturingandtestingthousandsofprototypes.Lestyouwonderwhetherthesesimulatedresultsholdup,tryityourself!Creatingdifferentsetsofsimulatedrandomdatawillresultinminorvariations,buttheendresultanunacceptableamountofvariationintheflowratewillbeconsistenteverytime.ThatoftheMonteCarlometh
23、od.MonteCarloUsingaDOEResponseEquationWhatifyoudon'tknowwhatequationtouse,oryouaretryingtosimulatetheoutcomeofauniqueprocess?prepares metal parts for electroplating.Anelectronicsmanufacturerhasassignedyoutoimproveitselectrocleaningoperation,whichElectroplatingletsmanufacturerscoatrawmaterialswit
24、halayerofadifferentmetaltoachievedesiredcharacteristics.Platingwillnotadheretoadirtysurface,sothecompanyhasacontinuous-flowelectrocleaningsystemthatconnectstoanautomaticelectroplatingmachine.Aconveyerdipseachpartintoabathwhichsendsvoltagethroughthepart,cleaningit.InadequatecleaningresultsinahighRoot
25、MeanSquareAverageRoughnessvalue,orRMS,andpoorsurfacefinish.ProperlycleanedpartshaveasmoothsurfaceandalowRMS.Tooptimizetheprocess,youcanadjusttwocriticalinputs:voltage(Vdc)andcurrentdensity(ASF).Foryourelectrocleaningmethod,thetypicalengineeringlimitsforVdcare3to12volts.Limitsforcurrentdensityare10to
26、150ampspersquarefoot(ASF).Step1:IdentifytheTransferEquationYoucannotuseanestablishedtextbookformulaforthisprocess,butyoucansetupaResponseSurfaceDOEinMinitabtodeterminethetransferequation.ResponsesurfaceDOEsareoftenusedtooptimizetheresponsebyfindingthebestsettingsfora"vitalfew"controllablef
27、actors.Inthiscase,theresponsewillbethesurfacequalityofpartsaftertheyhavebeencleaned.TocreatearesponsesurfaceexperimentinMinitab,chooseStat>DOE>ResponseSurface>CreateResponseSurfaceDesignBecausewehavetwofactorsvoltage(Vdc)andcurrentdensity(ASF)we'llselectatwo-factorcentralcompositedesign
28、,whichhas13runs.AfterMinitabcreatesyourdesignedexperiment,youneedtoperformyour13experimentalruns,collectthedata,andrecordthesurfaceroughnessofthe13finishedparts.MinitabmakesiteasytoanalyzetheDOEresults,reducethemodel,andcheckassumptionsusingresidualplots.UsingthefinalmodelandMinitab'sresponseopt
29、imizer,youcanfindtheoptimumsettingsforyourvariables.Inthiscase,yousetvoltsto7.74andASFto77.8toobtainaroughnessvalueof39.4.TheresponsesurfaceDOEyieldsthefollowingtransferequationfortheMonteCarlosimulation:Roughness=957.8-189.4(Vdc)-4.81(ASF)+12.26(Vdc2)+0.0309(ASF2)Step2:DefinetheInputParametersNowyo
30、ucansettheparametricdefinitionsforyourMonteCarlosimulationinputs.(Thestandarddeviationsmustbeknownorestimatedbasedonexistingprocessknowledge.)Voltsarenormallydistributedwithameanof7.74Vdcandastandarddeviationof0.14Vdc.AmpsperSquareFoot(ASF)arenormallydistributedwithameanof77.8ASFandastandarddeviatio
31、nof3ASF.Step3:CreateRandomDataWiththeparametersdefined,it'ssimpletocreate100,000rowsofsimulateddataforourtwoinputsusingMinitab'sCalc>RandomData>Normaldialog.Step4:SimulateandAnalyzeProcessOutputSummaryforRMSroughness95% CorrtMenctt IntervalsA-Squared4627.S?<0.00?MW甄蝴0,271Skewness2.01510KyrtositN100000MW上我國(guó)wti旭39佃Med on里71。3nj QuvtileMaxiitmoi幅1兆An&oCwling Normality Test95%Ligv聞 for Mea
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 租賃廠房合同協(xié)議
- 招標(biāo)文件評(píng)審的實(shí)踐操作與評(píng)審標(biāo)準(zhǔn)
- 家庭護(hù)理家政工雇傭合同
- 土地居間合作合同書(shū)
- 現(xiàn)金贖樓服務(wù)合同還款還款監(jiān)管政策
- 借款保證協(xié)議模板
- 個(gè)人社會(huì)救助借款合同范本
- 河砂礫石采購(gòu)協(xié)議
- 林業(yè)采伐合作合同
- 抗洪項(xiàng)目論證招標(biāo)
- 電力行業(yè)電力調(diào)度培訓(xùn)
- 生態(tài)安全與國(guó)家安全
- 全力以赴備戰(zhàn)期末-2024-2025學(xué)年上學(xué)期備戰(zhàn)期末考試主題班會(huì)課件
- 2024年保密協(xié)議書(shū)(政府機(jī)關(guān))3篇
- 《視頻拍攝與制作:短視頻?商品視頻?直播視頻(第2版)》-課程標(biāo)準(zhǔn)
- 研發(fā)部年終總結(jié)和規(guī)劃
- 石油開(kāi)采技術(shù)服務(wù)支持合同
- 山東省煙臺(tái)市2024屆高三上學(xué)期期末考試英語(yǔ)試題 含解析
- 公司戰(zhàn)略與風(fēng)險(xiǎn)管理戰(zhàn)略實(shí)施
- 2024年-2025年《農(nóng)作物生產(chǎn)技術(shù)》綜合知識(shí)考試題庫(kù)及答案
- 廣東省廣州市白云區(qū)2022-2023學(xué)年八年級(jí)上學(xué)期物理期末試卷(含答案)
評(píng)論
0/150
提交評(píng)論