2019級空間曲面ppt課件_第1頁
2019級空間曲面ppt課件_第2頁
2019級空間曲面ppt課件_第3頁
2019級空間曲面ppt課件_第4頁
2019級空間曲面ppt課件_第5頁
已閱讀5頁,還剩30頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

1、四、二次曲面四、二次曲面一、曲面方程的概念一、曲面方程的概念二、旋轉(zhuǎn)曲面二、旋轉(zhuǎn)曲面 三、柱面三、柱面曲面及其方程 0),(zyxFSzyxo如果曲面 S 與方程 F( x, y, z ) = 0 有下述關(guān)系:(1) 曲面 S 上的任意點(diǎn)的坐標(biāo)都滿足此方程;那么 F( x, y, z ) = 0 叫做曲面 S 的方程, 曲面 S 叫做方程 F( x, y, z ) = 0 的圖形.(2) 不在曲面 S 上的點(diǎn)的坐標(biāo)不滿足此方程,定義定義2. 2. 一條平面曲線一條平面曲線 繞其平面上一條定直線旋轉(zhuǎn)繞其平面上一條定直線旋轉(zhuǎn)一周所形成的曲面叫做旋轉(zhuǎn)曲面.該定直線稱為旋轉(zhuǎn)軸軸 . .例如例如 :故旋

2、轉(zhuǎn)曲面方程為, ),(zyxM當(dāng)繞 z 軸旋轉(zhuǎn)時,0),(11zyf,), 0(111CzyM若點(diǎn)給定 yoz 面上曲線 C: ), 0(111zyM),(zyxM1221,yyxzz則有0),(22zyxf則有該點(diǎn)轉(zhuǎn)到0),(zyfozyxC0),(:zyfCoyxz0),(22zxyf的圓錐面方程. 解解: : 在在yozyoz面上直線面上直線L L 的方程的方程為為cotyz 繞z 軸旋轉(zhuǎn)時,圓錐面的方程為cot22yxz)(2222yxazcota令xyz兩邊平方L), 0(zyMxy12222czax分別繞 x軸和 z 軸旋轉(zhuǎn)一周所生成的旋轉(zhuǎn)曲面方程. 解解: :繞繞 x x 軸旋轉(zhuǎn)

3、軸旋轉(zhuǎn)122222czyax繞 z 軸旋轉(zhuǎn)122222czayx這兩種曲面都叫做旋轉(zhuǎn)雙曲面.所成曲面方程為所成曲面方程為zxyz引例引例. . 分析方程分析方程表示怎樣的曲面 .的坐標(biāo)也滿足方程222Ryx解解: :在在 xoy xoy 面上,面上,表示圓C, 222Ryx222Ryx沿曲線C平行于 z 軸的一切直線所形成的曲面稱為圓故在空間222Ryx過此點(diǎn)作柱面柱面. .對任意 z ,平行 z 軸的直線 l ,表示圓柱面oC在圓C上任取一點(diǎn) , )0 ,(1yxMlM1M),(zyxM點(diǎn)其上所有點(diǎn)的坐標(biāo)都滿足此方程,xyzxyzol平行定直線并沿定曲線 C 移動的直線 l 形成的軌跡叫做柱

4、面. 表示拋物柱面,母線平行于 z 軸;準(zhǔn)線為xoy 面上的拋物線. z 軸的橢圓柱面.xy2212222byaxz 軸的平面.0 yx表示母線平行于 C(且 z 軸在平面上)表示母線平行于C 叫做準(zhǔn)線, l 叫做母線.xyzooxzy2l柱面,柱面,平行于 x 軸;平行于 y 軸;平行于 z 軸;準(zhǔn)線 xoz 面上的曲線 l3.母線柱面,準(zhǔn)線 xoy 面上的曲線 l1.母線準(zhǔn)線 yoz 面上的曲線 l2. 母線表示方程0),(yxF表示方程0),(zyG表示方程0),(xzHxyz3lxyz1l三元二次方程 適當(dāng)選取直角坐標(biāo)系可得它們的標(biāo)準(zhǔn)方程,下面僅 就幾種常見標(biāo)準(zhǔn)型的特點(diǎn)進(jìn)行介紹 .研究

5、二次曲面特性的基本方法: 截痕法 其基本類型有: 橢球面、拋物面、雙曲面、錐面的圖形通常為二次曲面. FzxEyxDxyCzByAx2220JIzHyGx(二次項(xiàng)系數(shù)不全為 0 )zyx),(1222222為正數(shù)cbaczbyax(1)范圍:czbyax,(2)與坐標(biāo)面的交線:橢圓,012222zbyax,012222xczby 012222yczax(3) 當(dāng) ab 時為旋轉(zhuǎn)橢球面; 當(dāng)abc 時為球面.截痕法截痕法用用z = hz = h截曲面截曲面用用y = my = m截曲面截曲面用用x = nx = n截曲面截曲面abcyx zo),(1222222為正數(shù)cbaczbyaxzqypx

6、2222(1) 橢圓拋物面( p , q 同號)zyx特別,當(dāng) p = q 時為繞 z 軸的旋轉(zhuǎn)拋物面.xzy0截痕法截痕法用用z = az = a截曲面截曲面用用y = by = b截曲面截曲面用用x = cx = c截曲面截曲面zqypx2222( p , q 同號)(2) 雙曲拋物面鞍形曲面,馬鞍面)zqypx2222( p , q 同號)zyx用用z = az = a截曲面截曲面用用y = 0y = 0截曲面截曲面用用x = bx = b截曲面截曲面xzy0截痕法截痕法zqypx2222( p , q 同號)截痕法截痕法xzy0用用z = az = a截曲面截曲面用用y = 0y =

7、0截曲面截曲面用用x = bx = b截曲面截曲面(1)(1)單葉雙曲面單葉雙曲面by 1) 1上的截痕為平面1zz 橢圓.時, 截痕為22122221byczax(實(shí)軸平行于x 軸;虛軸平行于z 軸)1yy zxy),(1222222為正數(shù)cbaczbyax1yy 平面 上的截痕情況:雙曲線: 虛軸平行于x 軸)by 1)2時, 截痕為0czax)(bby或by 1)3時, 截痕為22122221byczax(實(shí)軸平行于z 軸;1yy zxyzxy相交直線: 雙曲線: 0),(1222222為正數(shù)cbaczbyax上的截痕為平面1yy 雙曲線上的截痕為平面1xx 上的截痕為平面)(11czz

8、z橢圓注意單葉雙曲面與雙葉雙曲面的區(qū)別: 雙曲線zxyo222222czbyax單葉雙曲面11雙葉雙曲面),(22222為正數(shù)bazbyax上的截痕為在平面tz 橢圓在平面 x0 或 y0 上的截痕為過原點(diǎn)的兩直線 .zxyo1)()(2222t byt axtz ,xyz1. 空間曲面空間曲面三元方程0),(zyxF 球面2202020)()()(Rzzyyxx 旋轉(zhuǎn)曲面如, 曲線00),(xzyf繞 z 軸的旋轉(zhuǎn)曲面:0),(22zyxf 柱面如,曲面0),(yxF表示母線平行 z 軸的柱面.又如,橢圓柱面, 雙曲柱面, 拋物柱面等 .三元二次方程),(同號qp 橢球面1222222czb

9、yax 拋物面:橢圓拋物面雙曲拋物面zqypx2222zqypx2222 雙曲面: 單葉雙曲面2222byax22cz1雙葉雙曲面2222byax22cz1 橢圓錐面: 22222zbyax5x922 yx1 xy斜率為1的直線平面解析幾何中空間解析幾何中方 程平行于 y 軸的直線 平行于 yoz 面的平面 圓心在(0,0)半徑為 3 的圓以 z 軸為中心軸的圓柱面平行于 z 軸的平面1. 指出下列方程的圖形指出下列方程的圖形:一、空間曲線的一般方程一、空間曲線的一般方程二、空間曲線的參數(shù)方程二、空間曲線的參數(shù)方程 三、空間曲線在坐標(biāo)面上的投影三、空間曲線在坐標(biāo)面上的投影空間曲線及其方程 空間

10、曲線可視為兩曲面的交線,其一般方程為方程組0),(0),(zyxGzyxF2SL0),(zyxF0),(zyxG1S例如例如, ,方程組方程組632122zxyx表示圓柱面與平面的交線 C. xzy1oC2表示上半球面與圓柱面的交線C. 022222xayxyxazyxzaozyxo稱它為空間曲線的 參數(shù)方程.)(txx 例如,圓柱螺旋線vbt,令bzayaxsincos,2 時當(dāng)bh2taxcostaysin t vz 的參數(shù)方程為上升高度, 稱為螺距 .)(tyy )(tzz M6321) 1 (22zxyx0)2(22222xayxyxaz解解: (1) 根據(jù)第一方程引入?yún)?shù) , txc

11、ostysin)cos26(31tz(2) 將第二方程變形為,)(42222aayx故所求為得所求為txaacos22tyasin2tazcos2121)20(t)20(t消去 z 得投影柱面則C 在xoy 面上的投影曲線 C為消去 x 得C 在yoz 面上的投影曲線方程消去y 得C 在zox 面上的投影曲線方程0),(0),(zyxGzyxF,0),(yxH00),(zyxH00),(xzyR00),(yzxTzyxCCzyxC1o002222zyyx1) 1() 1(1:222222zyxzyxCzxyo1C所圍的立體在 xoy 面上的投影區(qū)域?yàn)?上半球面和錐面224yxz)(322yxz0122zyx在 xoy 面上的投影曲線)(34:2222yxzyxzC二者交線.0, 122zyx所圍圓域:二者交線在xoy 面上的投影曲線所圍之

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論