培優(yōu)提升平面幾何4_第1頁(yè)
培優(yōu)提升平面幾何4_第2頁(yè)
培優(yōu)提升平面幾何4_第3頁(yè)
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、第四講 平面幾何部分【例 1】 如圖所示的四邊形的面積等于多少?【解析】 題目中要求的四邊形既不是正方形也不是長(zhǎng)方形,難以運(yùn)用公式直接求面積.我們可以利用旋轉(zhuǎn)的方法對(duì)圖形實(shí)施變換:把三角形繞頂點(diǎn)逆時(shí)針旋轉(zhuǎn),使長(zhǎng)為的兩條邊重合,此時(shí)三角形將旋轉(zhuǎn)到三角形 的位置.這樣,通過(guò)旋轉(zhuǎn)后所得到的新圖形是一個(gè)邊長(zhǎng)為的正方形,且這個(gè)正方形的面積就是原來(lái)四邊形的面積.因此,原來(lái)四邊形的面積為.(也可以用勾股定理)【例 2】 如圖所示,中,以為一邊向外作正方形,中心為,求的面積 【解析】 如圖,將沿著點(diǎn)順時(shí)針旋轉(zhuǎn),到達(dá)的位置由于,所以而,所以,那么、三點(diǎn)在一條直線上由于,所以是等腰直角三角形,且斜邊為,所以它的面

2、積為根據(jù)面積比例模型,的面積為【例 3】 如圖,以正方形的邊為斜邊在正方形內(nèi)作直角三角形,、交于已知、的長(zhǎng)分別為、,求三角形的面積 【解析】 如圖,連接,以點(diǎn)為中心,將順時(shí)針旋轉(zhuǎn)到的位置那么,而也是,所以四邊形是直角梯形,且,所以梯形的面積為:()又因?yàn)槭侵苯侨切危鶕?jù)勾股定理,所以()那么(),所以()【例 4】 如下圖,六邊形中,且有平行于,平行于,平行于,對(duì)角線垂直于,已知厘米,厘米,請(qǐng)問(wèn)六邊形的面積是多少平方厘米? 【解析】 如圖,我們將平移使得與重合,將平移使得與重合,這樣、都重合到圖中的了這樣就組成了一個(gè)長(zhǎng)方形,它的面積與原六邊形的面積相等,顯然長(zhǎng)方形的面積為平方厘米,所以六邊形的面積為平方厘米【例 5】 如圖,三角形的面積是,是的中點(diǎn),點(diǎn)在上,且,與交于點(diǎn)則四邊形的面積等于 【解析】 方法一:連接,根據(jù)燕尾定理,, 設(shè)份,則份,份,份,如圖所標(biāo)所以方法二:連接,由題目條件可得到,所以,而所以則四邊形的面積等于【鞏固】如圖,長(zhǎng)方形的面積是平方厘米,是的中點(diǎn)陰影部分的面積是多

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論