




版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、第32卷第2期2003年6月熱力透平THERMALTURBINEVo.3No.2June2003ApplicationofAdvancedCFD2MethodstotheDesignofHighlyEfficientSteamTurbinesT.Thiemann,A.deLazzer,M.Deckers(SteamTurbineEngineering,SiemensAGPowerGeneration,Mülheim,Germany)Abstract:Thepresentpaperinvolvestheapplicationofamoderncomputationalfluiddyna
2、mics(CFD)methodinthedesignprocessofhighlyefficientsteamturbines.Themethodisappliedtotypicalsteamturbinedesigncases,namelythecalculationofthefullythree2dimensionalflowthroughsteamturbinestages,bladesealsandturbineex2hausthoods.Remarkablygoodagreementwasachieved.Furthermore,theresultsofstructuredandun
3、structuredcodeswerecomparedagainsteachother.ExcellentagreementwasfoundandtheuniqueabilitiesofanunstructuredCFDcodetomodelcomplexgeometriesaredemonstrated.Keywords:steamturbinedesign;blade2pathdesign;labyrinthseal;exhausthoodCLCnumber:TK212Document:AArticle:-)運(yùn)用現(xiàn)代CFD摘要:(Dynamics,CFD)技術(shù)設(shè)計(jì)高效率汽輪機(jī)的方法,。計(jì)算
4、結(jié)果和實(shí)際是相符的。進(jìn)一步對(duì),已證明,非結(jié)構(gòu)單元CFD程序用于復(fù)雜形狀的流場(chǎng)計(jì)算時(shí),并具有獨(dú)特的功能。關(guān)鍵詞:汽輪機(jī)設(shè)計(jì);葉片通流部分設(shè)計(jì);迷宮式密封;排汽缸;計(jì)算流體動(dòng)力學(xué)1IntroductionTheoverallefficiencyofadvancedsteamturbinepowerplantsisstronglyrelatedtotheefficiencyatwhichthepotentialenergyofthesteamisconvert2edintorotationalkineticenergywithinthesteamturbine.Itisthereforethetas
5、kofasteamturbinedesignengineertokeeptheenergylossesaslowaspossibleinallcomponentsofthesteamflowpath,suchastheturbineinletduct,thebladepassage,andtheexhaustcasing.Thisisadifficulttask,sincetheflowalongthispathisextremelycomplexduetoitsinherentthree2dimensionalandunsteadynature.Computationalfluiddynam
6、ics(CFD)methodscanprovidearemedytothissituation.Thesemethodsmustnecessarilyemployrathercrudeturbulencemodelsandtheymaynotresolveallflowfeaturessuchasseparationbubbles,transi2tionregionsandunsteadyvorticesinallcasesaccu2rately.Also,theyareneitherfullygridindependentnorcannumericalerrorsbecompletelyav
7、oided.Nevertheless,therapiddevelopmentsinCFDandcomputerpowerinrecentyearshaveprovidedverysophisticatedandreliabletoolsthatareabletopre2dictoveralltrendsandperformance.Therefore,three2dimensionalNavier2Stokesmethodsarecon2sideredtobebasicdesigntoolsthesedaysandtheyarenowbeingroutinelyusedataveryearly
8、stageinthedesignprocess.CFDtechniquesprovideaplatformforenhancedunderstandingofthecomplexfluiddynamicmecha2nismsinturbomachines.Thiswillultimatelyleadtonewandinnovativedesignfeaturessuchasbowedturbinebladesasshown,forinstance,byJansenandUlm1.Alargenumberofdifferentde2signoptionscanbestudiedingreatde
9、tail,consum2ingonlyafractionofthetimeneededtocarryoutasingleexperiment.ThedesigncycletimeandhenceReceivedDay:2003-03-05Biography:Dr.ThomasThiemann(1966-),male,studiedmechanicalengineeringattheRuhr-UniversityofBochum,Germany.Afterre2ceivinghisdoctoraldegree(Dr.-Ing.)inthefieldofcompressoraerodynamics
10、heworkedseveralyearsasaprojectleaderonindus2trialthermo-andfluiddynamicprojects.SincejoiningSiemensPowerGeneration,heisresponsibleforthefluiddynamicdesignofsteamturbinecomponents.In2002hewasnominatedasprojectleaderfortheproductdevelopmentoftheLPsteamturbines.第2期熱力透平87designcyclecostsarethereforedras
11、ticallyreduced.Someoftheprogressthathasbeenachievedbyus2ingmodernCFDmethodshasbeenreportedbyOeynhausenetal.2,Cofer3,andScarlin4.SinceaconsiderableportionofthetimerequiredforacompleteCFDanalysismustbeaccountedforgridgeneration,ahighlyefficientdesignenviron2mentisofconsiderableimportanceforindustriala
12、pplications.Inthiscontext,theapplicationofun2structuredmeshesespeciallyformodellingcomplexgeometriesisofincreasingrelevance.However,inmostcasesthisleadstoincreaseddemandsonhard2wareresourcesandcomputationtimes.Forthisreason,thedecisiononwhethertouseunstructuredorstructuredmeshescannotbeansweredingen
13、eralbutdependsonthecurrentproblem.Inthesubsequentsections,adescriptionofthecomputationalmethodisgivenandgeneralrequire2mentsforgridgenerationtoolsforengineeringposearedescribed.Themethodisto2calsteamturbinedesign,tionofthefullysteamturbinetheofleakageflowsandtheexhausthoods.Acomparisonisbetweentheca
14、lculatedresultsandexperimentaldatainordertoassessthepredic2tivecapabilityofthepresentmethod.Further2more,thedifferentmeshingschemesarecomparedagainsteachother.manufacturingcostsleadtoasteadyincreaseoftheutilisationfactorofthebladematerialsunderoper2atingconditions.Underthesepremises,calculationmetho
15、dshavetoberefinedtoassuresufficientme2chanicalstrengthoftheaerofoil.Herebydetailedknowledgeoftheloaddistributiononthebladesisrequiredandpossiblyeventhreedimensionalfluid2structurecouplinghastobeconsidered.2.2PhysicalModelIngeneral,theissueofCFDinclassicalturboma2chineryapplications,istoprovideasolut
16、iontothefollowingequationsforagivenpuresinglecompo2nentmediuminsomekindofflowpath(Byrd5,6White):1.conservationofmassdt0(1)thevectorofveloci2ofmomentum+S=-p-Dt(2)whereisthestrainontheflowandSisdenotesanoptionalsourcetermofvolumeforces(e.g.gravity,electricalormagneticforces)3.conserv
17、ationofenergyandwiththeheatfluxq.(+vh)=-q-:v+dt(2TurbineDesignUsingCFD2.1GeneralAspectsStateoftheartturbineandblade2pathdesignin2evitablyincorporates3DCFDanalysisforseveralreasons.Firstly,althoughnotalwaysmentionedasamajorreason,experimentalinvestigationshavesimplybecomeve
18、ryexpensive.Experimentalstudiesoverawideparameterrangecannotbeaffordedanymoreasameanstodevelopaspecificbladeoranexhausthooddesign.Nowadays,parameterstudiescanonlybeaffordednumerically,whereasexperimentalvalidationusu2allywillberestrictedtoacertainfinal(orclosetofinal)design.Secondly,currentdemandson
19、tur2bineefficiencyrequirebladeaerofoildesignphiloso2phiestakingintoaccountatleastthree2dimensionaleffectsinformofan”averagedsteadystate”3Dflowfieldbutpossiblyalsocallforconsiderationoftransientandunsteadyeffects.Thisisofspecialimportancefortheturbineexhaustwherethepres2surerecoverydependssignificant
20、lyontheflowfielddistributionleavingthelaststage.Furthermore,thedemandsonefficiencyaswellasthoseonplantproductivityaimedatreducingthematerialanddt+vp)(3)Forcompressiblefluids,onehasalsotoconsidertheappropriateequationofstate.Equations(1)2(3)giveacompletedescriptionofthemacroscopicflowofasing
21、lecomponentflowfield,iftheflowfieldcouldbecompletelymod2elled.However,thiswouldrequireextremelyfinegridstoresolvethetiniestturbulencestructureswhichishardlyeverpossiblefortheflowchannelsizesrelevantforturbomachinery.Accordingly,theequationsaretimeaveragedandlinearisedwithrespecttomeanlocalflowandflu
22、idproperties,herebyintroducingadditionalvariablesfortheun2known(turbulent)velocityfluctuationsandtheirderivatives.Bymeansofturbulencemodels,theseso2calledReynolds2AveragedNavier2Stokesequa2tionsareclosed.Generally,therearemanydifferentapproachesinturbulencemodels.Awellknownanalyticalmixinglengthmode
23、lsistheBaldwin2Lomaxmod2el,thentherearetheso2calledoneandtwoequa2tionmodels2namedafterthenumberofadditionaltransportequationstobesolvedtogetherwiththe,k2areexamplesoftwo2e2flowfield2,wherek288ApplicationofAdvancedCFD2MethodstotheDesignofHighlyEfficientSteamTurbinesquationmodelsandmostofthemarethemse
24、lvesdi2videdupintoseveraldifferentapproaches.Asum2modelsisgivenin7.Final2maryofdifferentk2ly,thereareReynolds2StressandAlgebraicReynolds2Stressmodelswhichtrytosolveforalltheunknownfluctuationcomponentsinthestresstensor,withtheresult,that6orevenmoreaddi2tionaltransportequationshavetobesolved.Un2fortu
25、nately,everysingleturbulencemodelhasitsfavouritefieldofapplicationanditsspecificneedsongridresolution.Forindustrialapplications,ak2typeturbulencemodelisoftenused.Thechoiceherebyisbasedonitsrelativerobustness,moderateneedsregardinggridrefinementnearwalls(e.g.modelsusuallyrequireratherfineresolutionof
26、k2theboundarylayer)andthefact,thatturboma2chineryflowsingeneralarehighlyturbulent.Herebyonehastotakeintoaccountasystematicerrorregardingwallfrictionandboundarymodelconsideration:Ak2layersasturbulent,thus2upnewboundary2ingedgeandtoaturbu2lentstateisFurthermore,thestandardformofthesemodelsincorporates
27、somemodellinglimitsregardingtheturbulentkineticenergypro2ductionrate,leadingtoanover2estimationoftheturbulentkineticenergygenerationinstagnationpointflow;asflowsaroundturbinebladesalwayshaveanatleasttwodimensionalstagnationpoint,thiseffecthastobecapturedbyappropriatemodifi2cationstothemodel(oneofthe
28、seistheso2calledmodelwhichKato2Launderextensiontothek2wasusedinthenumericalcodeusedforthepre2sentedresults).Forthepresentstudies,thecommercialCFX2TASCflowandCFX25.5codeswereused.ThesecodesbothsolveafinitevolumeformulationoftheReynolds2AveragedNavier2Stokesequationsusingacoupledimpl
29、icitsolver.CFXTASCflowherebyisrestrictedtostructuredhexahedralmeshes,where2asCFX25.5canalsohandleunstructuredtetrahe2dralandtriangularprismmeshes.Turbulencewasmodel,especiallyfortur2consideredusingthek2binestageswhilstusingtheKato2Launderexten2sion.Calculationsweredoneforsteadystat
30、eusual2lywithmixingplanesusedforcouplingreferencesystemsofdifferentstateofrotation.3ApplicationofCFDtoSteamTurbineBladePathandTurbineDesign3.13DBladeDesignUsingCFD3.1.1GridGenerationProvidingasuitablegridfortheproblemtobestudiedwithCFDisofessentialimportanceinor2dertoobtainreliableresults.Unsuitable
31、gridsorcellswithunfavourableaspectratiosdonotonlyworsentheconvergencebehaviourofthecode,buttheymightalsostronglyinfluencethenumericalre2sults,whichmayevenleadtounrealisticflowsepa2ration.Forturbomachineryapplications,agridprovidinggoodorthogonalitywithrespecttothebladeaerofoilandfollowingtheactualfl
32、owexitan2gleshouldbepreferredinordertoprovidegoodnu2mericaltreatmentofthenearwallregionandtoob2tainawellresolvedbladewake.Gradientswithintheflowfieldwillnecessarilybesmearedinpropor2tiontotheextensionofthealongthegra2dients.,forwellalignedwithnormaltothe,beobtainedthanaspectratiocrossingthewakeat,ev
33、enwhenthegridresolutiona2thewakeismuchcoarser.Anotheraspectofgridgenerationisthecouplingofperiodicboundariesordifferentgridblocks.Re2gardingorthogonalityofameshsurroundingatur2bineblade,node2to2nodecorrespondenceonthepe2riodicinterfacemightnotbedesirableandanarbi2trary(orinterpolated)couplingmightbe
34、pre2ferred.However,interpolationalgorithmsforgridcouplingusuallylooseoneorderofmathematicalac2curacy.Thussomedistortionofthegridmightbeanecessarycompromisetoobtainawellresolvedflowfieldwithinthebladepassage.Basedontheseconsiderations,thegridgenera2tionstrategyfollowedforthecurrentstudyontur2bineblad
35、epathandaerofoildesignisasfollows:1.providegoodefficientandtrust2worthynearwalltreatmentofthebladeprofilesbyapplyinganO2typegridwithbestpossibleorthogonalitycloselyaroundthebladeprofile.2.Fillthespacetotheperiodicboundaries(whicharechosentobeapproximatelyinthemid2dleoftheflowchannel)withaC2grid,star
36、tingsomewhereclosetothesuction2sidetrailingedgeoftheprofile,extendingforwardaroundthenoseofthebladeandbacktosomewherenearthepressuresidetrailingedge.Herebyprovidenode2to2nodecorrespondenceontheperiodicboundarytoavoidadecreaseinnumericalaccuracy.3.FilltheremainingspacearoundthetrailingedgewithtwoH2gr
37、idsalignedinawaysuchthatgoodresolutionofthebladewakeisensured.Onceagain,providenode2to2nodecorrespondenceontheperiodicboundaries.4.Ifadditionalgridsareadded,e.g.forsimu2第2期熱力透平89latingshroudleakageflows,attachthosegridsus2inginterpolatednon2node2to2nodematchinginter2faces,sincematchinggridswouldrequ
38、iretremen2dousgriddingefforts.Thegridresolutionitselfnecessarilydependsonboththetypeofproblemtobestudiedandtheavailablehardwareresources.Additionally,forin2dustrialapplicationstheabilitytoreproducespecificgridpropertiesisofvitalimportance.Inmanycas2es,itisnotpracticabletorefinegridsuntilgrid2in2depe
39、ndentresultsareobtained,sincea)numericalresourcescanbelimitedandb)duetothefactthatmostCFDcodesusewallfunctionsfornear2walltreatment.Thesewallfunctionsrequire,thatthedistancebetweenthewallandthefirstgridnodewithintheflowfieldlieswithinacertainfiniterangeofdistances.Furtherrefinementofthegridwillviola
40、tetheunderlyingphysicalassumptionsforthesewall2functions.Thus,theresultsstillchangingdonotimprovebutHowever,sufficientlyisonofdifferenttheinfluenceofbeassumedtobesimilarforallconsidered.Inordertoen2suresimilargridproperties,gridgenerationshouldbebasedonsomekindofstandardisedtemplates,functionsorgrid
41、dingcoefficients,whichallowtosaveacharacteristicgridlayoutandtoapplyittodifferentgeometricparameters.Bytheway,suchtemplatescanalsobesurroundedbyahandywork2ingenvironmentforgriddefinition,parameterad2justment,gridgeneration,controlofgridproper2ties(e.g.extremalgridvolumes,extremalaspectratiosorextrem
42、algridangles)andparametersetmanagement,herebysignificantlyspeedingupthegenerallyiterativegridgenerationprocess.Espe2ciallyforusershavingnodistinct3D2CFDback2ground,thesetoolslikewiseserveassomeindirectmeanstoassureatleastacertainminimumofgridquality,especiallywhennumericalstudiesarehand2edovertosub2
43、contractorsortemporalemployees.AnexampleofthegridforasteamturbinebladesimilartothoseusedinthepresentstudyisgiveninFigure1,showinggridintheblade2to2bladeplane.Figure1:Blade2to2Thedifferentgridsmen2blademulti2blockgridfortionedaboveareclearlyvis2aturbinebladerowible,soisthenode2to2nodegridcorresponden
44、cealongtheperiodicboundary.Inthepresentcase,thegridresolutionwaslimitedforthesakeofamultistageanalysisincludingbladeshroudgeometries.Inthefollowing,someresultsofthenumericalanalysisofafourstagehighpressuremodelturbinewillbediscussed.Themodelturbinewasexperi2mentallystudiedintheSiemensPGMülheimh
45、ighpressureturbinerig.Experimentswereperformedunderpressurisedconditions(inletpressurearound40bar).Thusthemodelturbinewasoperatingun2derReynoldsnumberssimilartothoseofrealhighpressuresteamturbines.Theturbinewasequippedwithbladeshroudsandsealsprovidingabladepathgeometrysimilartotherealsteamturbinebla
46、de2pathinordertoachieveasarealisticoverallflowfieldturbineaspossi2entireconfigurationbladeseals,isdepictedinNotethesealingarrangement(inthepresentcase,steppedshroudswith3sealingfins)andtheresultingcavitiesupstreamanddownstreamofeachindividualbladerow.Asmentionedabove,thesealinggridsarecoupledtothefl
47、owpathusinginterpolatedinterfaces,Figure3.Figure2:Configurationoftheentiremodelturbinewithseals3.1.2ResultsforthefourstageturbinemodelTheresultsoftheanalysisofthemultistagetesttur2binerigisfocusedonthefollowingissues:1.Theinfluenceofleakageflowsontheover2allflowfieldandturbineefficiency.Figure3:Deta
48、ilsofthegrid2.Theimportanceofattachmentofthesealregionmultistageanalysisre2(redgrid)tothemainflowgardingtheaccuracyofPathgrid(black)showingthepredictedflowfieldtheinterpolated(nonnode2)andofthepredictedeffi2to2nodematchingattach2mentciency.Forthesakeofcompar2ison,themachinehasalsobeenmodelledwithre2
49、ducedsize(twoandthreestages)andalsowithouttheentiresealingarrangements(leadingtosmoothinnerandouterannuluscontours).Furthermore,a90ApplicationofAdvancedCFD2MethodstotheDesignofHighlyEfficientSteamTurbinesconfigurationwithblockedstatorbladesealswassimulatedwheretheshroudofthebladeswerein2creasedinthe
50、numericalmodelsuchastocontacttherotorcontour.Thisledtoaconfigurationwerethecavitiesup2anddownstreamofthebladerowswerepresentbutnoleakagemassfractioncouldoc2cur.Theimportanceoftheleakagemassflowontheoverallperformanceoftheturbinecanbeestimatedqualitatively,havingalookatstreaklinesstartingnearthehuban
51、dcasingwallupstreamofthefirststatorasdepictedinFigure4.field2andmuchlikelyontheoverallperformance2ex2ceedstheoneoftherotorbladeleakagefraction.ThisassumptionissupportedbyFigure4whencomparedtothenumericalsimulationofaconfigurationwithblockedstatorseals,Figure5.Thedifferenceofthestreamlinepatterninthe
52、hub2regionisstriking,whereasthepatternintheouterflowpathregimere2mainsunchanged.Figure5:SimilartoFigure4,butstatorbladesealsFigure4:Streaklinesplot,showingtheand2tributionofleakageflowpath;Obviously,whenenteringtherotorbladerowisimmediatelydrivenfarupintoflowregionandremainsthere.Sincetheleakagefrac
53、tionofthesubsequentsta2torbladeswillbehavesimilarly,alargeregionofdis2turbedmainflowwillresult.Theleakagefractionleav2ingtherotorbladesealisdrivenbackradiallyoutwardswithinthenextstatorbladerowandthusitsinfluenceismuchmorelocallyrestricted.Onecanconclude,thattheinfluenceofstatorbladeleakageontheover
54、allflowTheoftheflowalsobecomesandrotoraxialexitinFigure6.Ob2fractiondoesstronglyen2ofthechannelvortexandleadsshiftoftheflowfielddisturbancetowithinthemainflowregion.Accordingtothestreaklineplots(Figures4and5)theinfluenceatthehubisstronger(velocitypeakisshiftedfrom10%to25%spanfromhub)thanatthecasing(
55、peakve2locityshiftedtolessthan20%fromcasing).Asonewouldexpectfromthestreaklineplots,thenewvelocitypeakundertheinfluenceofrotorbladeleakageflowatabout80%radialspanismuchmoreconstricted(orlesssmeared)inthespanwisedirectionthantheonearound25%radialspangen2eratedbythestatorbladeleakage.Figure6:Radialdis
56、tributionofstatorandrotorbladeexitaxialvelocity.Variationsforstages1to4withnormalseals(opensymbols)andblockedstatorseals(filledsymbols)JudgingfromFigures4to6,gradualflowfielddegradationalongthemachineisobvious.Aboveall,theperformanceofthefirststagewillbebetterascomparedtoallsubsequentstages,sincethe
57、flowfielddisturbanceduetoleakagemassflowhasnotbeendevelopedyet.Asaruleofthumb,onecould第2期熱力透平91concludethatdownstreamofthesecondstage(sta2tor/rotor)repeatingflowconditionshavebeenachieved.Thisshouldbecomeobviouswhencomparingtheefficiencypredictionsforconfigurationswithdiffer2entstagecounts.InFigure7
58、,asummaryoftheseeffectsisgiven.Theefficiencyofa22stageconfigu2ration(thefirsttwostages)withoutseals(alsonosealcavitiesweremodelled)showsnotmuchcorre2spondencewiththemeasureddata.Eventheover2allshapeoftheefficiencychartdeviatesfromthemeasureddata2theefficiencydecreaseforbothsmallandhighloadisunderest
59、imated.Byconsider2ationofstatorandrotorbladesealsonly,thecalcu2latedefficiencyconsiderablyapproachesthemea2sureddataandtheagreementintheoveralltrendscanbeseentoimprove.Whenconsideringfurthermore,thattheefficiencyisdistributedunevenlya2longthemachine(thefirststageperformsthanallsubsequentstages)leadingaa
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025至2030年中國(guó)帶置物架豪華淋浴房數(shù)據(jù)監(jiān)測(cè)研究報(bào)告
- 二零二五年度房產(chǎn)贈(zèng)與子女協(xié)議書(shū)聯(lián)合子女房產(chǎn)租賃收益共同管理協(xié)議
- 互換性第1章 學(xué)習(xí)教材
- 2025年催化劑用載體合作協(xié)議書(shū)
- 二零二五年度婚內(nèi)房產(chǎn)權(quán)屬爭(zhēng)議調(diào)解及處理合同
- 二零二五年度拆除工程安全風(fēng)險(xiǎn)評(píng)估及整改協(xié)議
- 二零二五年度家庭保姆家庭服務(wù)規(guī)范協(xié)議
- 二零二五年度寒假工專(zhuān)項(xiàng)就業(yè)服務(wù)勞動(dòng)合同
- 二零二五年度離婚法律咨詢(xún)與婚姻家庭法律援助協(xié)議
- 2025年甘肅交通職業(yè)技術(shù)學(xué)院?jiǎn)握新殬I(yè)傾向性測(cè)試題庫(kù)必考題
- 公司辦公室5S管理規(guī)定(實(shí)用含圖片)
- (完整版)餐飲員工入職登記表
- 智能化工程施工工藝圖片講解
- 人教版小學(xué)五年級(jí)數(shù)學(xué)下冊(cè)教材解讀
- 2022年最新蘇教版五年級(jí)下冊(cè)科學(xué)全冊(cè)教案
- 咳嗽與咳痰課件
- 咖啡樹(shù)的修剪方法和技術(shù)_種植技巧
- 小學(xué)四年級(jí)數(shù)學(xué)奧數(shù)應(yīng)用題100題
- 綜合布線(xiàn)驗(yàn)收?qǐng)?bào)告材料
- 《初三心理健康教育》ppt課件
- 重慶鐵塔公司配套設(shè)備安裝施工服務(wù)技術(shù)規(guī)范書(shū)
評(píng)論
0/150
提交評(píng)論