定積分在幾何中的應(yīng)用_第1頁
定積分在幾何中的應(yīng)用_第2頁
定積分在幾何中的應(yīng)用_第3頁
定積分在幾何中的應(yīng)用_第4頁
定積分在幾何中的應(yīng)用_第5頁
已閱讀5頁,還剩27頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

1、課堂講練互動(dòng)課堂講練互動(dòng)活頁規(guī)范訓(xùn)練活頁規(guī)范訓(xùn)練課前探究學(xué)習(xí)課前探究學(xué)習(xí)17定積分的簡單應(yīng)用17.1定積分在幾何中的應(yīng)用課堂講練互動(dòng)課堂講練互動(dòng)活頁規(guī)范訓(xùn)練活頁規(guī)范訓(xùn)練課前探究學(xué)習(xí)課前探究學(xué)習(xí)【課標(biāo)要求】1會(huì)通過定積分求由兩條或多條曲線圍成的圖形的面積2在解決問題的過程中,通過數(shù)形結(jié)合的思想方法,加深對定積分的幾何意義的理解【核心掃描】由多條曲線圍成的分割型圖形的面積的求解是考查的重點(diǎn)課堂講練互動(dòng)課堂講練互動(dòng)活頁規(guī)范訓(xùn)練活頁規(guī)范訓(xùn)練課前探究學(xué)習(xí)課前探究學(xué)習(xí)課堂講練互動(dòng)課堂講練互動(dòng)活頁規(guī)范訓(xùn)練活頁規(guī)范訓(xùn)練課前探究學(xué)習(xí)課前探究學(xué)習(xí)(2)如圖2,陰影部分的面積為 所以,曲邊梯形的面積等于 的定積分

2、形上、下兩個(gè)邊界所表示的函數(shù)的差曲邊梯課堂講練互動(dòng)課堂講練互動(dòng)活頁規(guī)范訓(xùn)練活頁規(guī)范訓(xùn)練課前探究學(xué)習(xí)課前探究學(xué)習(xí)想一想:當(dāng)f(x)0時(shí),f(x)與x軸所圍圖形的面積怎樣表示?提示如圖,因?yàn)榍吿菪紊线吔绾瘮?shù)為g(x)0,下邊界函數(shù)為f(x),所以s (0f(x)dx f(x)dx.課堂講練互動(dòng)課堂講練互動(dòng)活頁規(guī)范訓(xùn)練活頁規(guī)范訓(xùn)練課前探究學(xué)習(xí)課前探究學(xué)習(xí)名師點(diǎn)睛利用定積分求曲邊圖形面積的步驟一般來說,利用定積分求曲邊圖形面積的基本步驟如下:第一步:畫出圖形;第二步:確定圖形范圍,通過解方程組求出交點(diǎn)橫坐標(biāo),確定積分上、下限;第三步,確定被積函數(shù),特別要注意分清被積函數(shù)的上、下位置;第四步,寫出平面

3、圖形面積的積分表達(dá)式;第五步,運(yùn)用微積分基本定理計(jì)算定積分,求出平面圖形的面積課堂講練互動(dòng)課堂講練互動(dòng)活頁規(guī)范訓(xùn)練活頁規(guī)范訓(xùn)練課前探究學(xué)習(xí)課前探究學(xué)習(xí)注意:由于定積分是一種和式的極限,它可以為正,也可以為0,還可以為負(fù)但平面圖形的面積一般來說總是為正的因此,當(dāng)定積分為負(fù)值時(shí),一定要通過取絕對值處理為正課堂講練互動(dòng)課堂講練互動(dòng)活頁規(guī)范訓(xùn)練活頁規(guī)范訓(xùn)練課前探究學(xué)習(xí)課前探究學(xué)習(xí)題型一不分割型圖形面積的求解【例1】 求由拋物線yx24與直線yx2所圍成圖形的面積課堂講練互動(dòng)課堂講練互動(dòng)活頁規(guī)范訓(xùn)練活頁規(guī)范訓(xùn)練課前探究學(xué)習(xí)課前探究學(xué)習(xí)課堂講練互動(dòng)課堂講練互動(dòng)活頁規(guī)范訓(xùn)練活頁規(guī)范訓(xùn)練課前探究學(xué)習(xí)課前探究學(xué)

4、習(xí)課堂講練互動(dòng)課堂講練互動(dòng)活頁規(guī)范訓(xùn)練活頁規(guī)范訓(xùn)練課前探究學(xué)習(xí)課前探究學(xué)習(xí)課堂講練互動(dòng)課堂講練互動(dòng)活頁規(guī)范訓(xùn)練活頁規(guī)范訓(xùn)練課前探究學(xué)習(xí)課前探究學(xué)習(xí)課堂講練互動(dòng)課堂講練互動(dòng)活頁規(guī)范訓(xùn)練活頁規(guī)范訓(xùn)練課前探究學(xué)習(xí)課前探究學(xué)習(xí)課堂講練互動(dòng)課堂講練互動(dòng)活頁規(guī)范訓(xùn)練活頁規(guī)范訓(xùn)練課前探究學(xué)習(xí)課前探究學(xué)習(xí)課堂講練互動(dòng)課堂講練互動(dòng)活頁規(guī)范訓(xùn)練活頁規(guī)范訓(xùn)練課前探究學(xué)習(xí)課前探究學(xué)習(xí)課堂講練互動(dòng)課堂講練互動(dòng)活頁規(guī)范訓(xùn)練活頁規(guī)范訓(xùn)練課前探究學(xué)習(xí)課前探究學(xué)習(xí)課堂講練互動(dòng)課堂講練互動(dòng)活頁規(guī)范訓(xùn)練活頁規(guī)范訓(xùn)練課前探究學(xué)習(xí)課前探究學(xué)習(xí)課堂講練互動(dòng)課堂講練互動(dòng)活頁規(guī)范訓(xùn)練活頁規(guī)范訓(xùn)練課前探究學(xué)習(xí)課前探究學(xué)習(xí)得交點(diǎn)橫坐標(biāo)為x0及x

5、1.因此,所求圖形的面積為課堂講練互動(dòng)課堂講練互動(dòng)活頁規(guī)范訓(xùn)練活頁規(guī)范訓(xùn)練課前探究學(xué)習(xí)課前探究學(xué)習(xí)課堂講練互動(dòng)課堂講練互動(dòng)活頁規(guī)范訓(xùn)練活頁規(guī)范訓(xùn)練課前探究學(xué)習(xí)課前探究學(xué)習(xí)課堂講練互動(dòng)課堂講練互動(dòng)活頁規(guī)范訓(xùn)練活頁規(guī)范訓(xùn)練課前探究學(xué)習(xí)課前探究學(xué)習(xí)(2)畫函數(shù)yf(x)的圖象如圖由圖象知所求面積為課堂講練互動(dòng)課堂講練互動(dòng)活頁規(guī)范訓(xùn)練活頁規(guī)范訓(xùn)練課前探究學(xué)習(xí)課前探究學(xué)習(xí)【題后反思】 由定積分求平面區(qū)域面積的方法求不規(guī)則圖形的面積是一種基本的運(yùn)算技能在這種題型中往往與導(dǎo)數(shù)、函數(shù)的最值、不等式等相關(guān)知識(shí)進(jìn)行融合課堂講練互動(dòng)課堂講練互動(dòng)活頁規(guī)范訓(xùn)練活頁規(guī)范訓(xùn)練課前探究學(xué)習(xí)課前探究學(xué)習(xí)課堂講練互動(dòng)課堂講練互動(dòng)

6、活頁規(guī)范訓(xùn)練活頁規(guī)范訓(xùn)練課前探究學(xué)習(xí)課前探究學(xué)習(xí)切點(diǎn)為(1,1),切線方程為y2x1.課堂講練互動(dòng)課堂講練互動(dòng)活頁規(guī)范訓(xùn)練活頁規(guī)范訓(xùn)練課前探究學(xué)習(xí)課前探究學(xué)習(xí)方法技巧化歸與轉(zhuǎn)化在求定積分中的應(yīng)用 在應(yīng)用定積分時(shí),定積分的計(jì)算是其中的重點(diǎn)也是難點(diǎn)為計(jì)算定積分,要細(xì)心觀察,有時(shí)某個(gè)定積分整體表示某些易求面積的圖形的面積,求定積分的值就可轉(zhuǎn)化為求圖形的面積當(dāng)有些被積函數(shù)的原函數(shù)不易求得時(shí),可考慮換元,轉(zhuǎn)換為易求原函數(shù)的被積函數(shù),這時(shí)積分變量也要改變課堂講練互動(dòng)課堂講練互動(dòng)活頁規(guī)范訓(xùn)練活頁規(guī)范訓(xùn)練課前探究學(xué)習(xí)課前探究學(xué)習(xí)課堂講練互動(dòng)課堂講練互動(dòng)活頁規(guī)范訓(xùn)練活頁規(guī)范訓(xùn)練課前探究學(xué)習(xí)課前探究學(xué)習(xí)課堂講練互動(dòng)課堂講練互動(dòng)活頁規(guī)范訓(xùn)練活頁規(guī)范訓(xùn)練課前探究學(xué)習(xí)課前探究學(xué)習(xí)課堂講練互動(dòng)課堂講練互動(dòng)活頁規(guī)范訓(xùn)練活頁規(guī)范訓(xùn)練課前探究學(xué)習(xí)課前探究學(xué)習(xí)課堂講練互動(dòng)課堂講練互動(dòng)活頁規(guī)范訓(xùn)練活頁規(guī)范訓(xùn)練課前探究學(xué)習(xí)課前探

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論