




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
1、數(shù)學(xué)思維與小學(xué)數(shù)學(xué)教學(xué) 作者:鄭毓信摘要:“幫助學(xué)生學(xué)會基本的數(shù)學(xué)思想方法”是新一輪數(shù)學(xué)課程改革所設(shè)定的一個基本目標(biāo)。以國際上的相關(guān)研究為背景,對小學(xué)數(shù)學(xué)教學(xué)中如何突出數(shù)學(xué)思維進(jìn)行具體分析表明,即使是十分初等的數(shù)學(xué)內(nèi)容也同樣體現(xiàn)了一些十分重要的數(shù)學(xué)思維形式及其特征性質(zhì)。關(guān)鍵詞:數(shù)學(xué)思維;小學(xué)數(shù)學(xué)教學(xué) 對于數(shù)學(xué)思維的突出強(qiáng)調(diào)是國際范圍內(nèi)新一輪數(shù)學(xué)課程改革的一個重要特征,如由美國的學(xué)校數(shù)學(xué)課程與評估的標(biāo)準(zhǔn)和我國的全日制義務(wù)教育數(shù)學(xué)課程標(biāo)準(zhǔn)(實驗稿)(以下簡稱課程標(biāo)準(zhǔn))關(guān)于數(shù)學(xué)教育目標(biāo)的論述中就可清楚地看出。然而,就小學(xué)數(shù)學(xué)教育的現(xiàn)實而言,上述的理念還不能說已經(jīng)得到了很好的貫徹
2、,而造成這一現(xiàn)象的一個重要原因就是以下的認(rèn)識:小學(xué)數(shù)學(xué)的教學(xué)內(nèi)容過于簡單,因而不可能很好地體現(xiàn)數(shù)學(xué)思維的特點。以下將依據(jù)國際上的相關(guān)研究對這一觀點作出具體分析,希望能促進(jìn)這一方向上的深入研究,從而能夠?qū)τ趯嶋H教學(xué)活動發(fā)揮積極的導(dǎo)向作用。 一、數(shù)學(xué)化:數(shù)學(xué)思維的基本形式眾所周知,強(qiáng)調(diào)與現(xiàn)實生活的聯(lián)系正是新一輪數(shù)學(xué)課程改革的一個重要特征?!皵?shù)學(xué)課程的內(nèi)容一定要充分考慮數(shù)學(xué)發(fā)展進(jìn)程中人類的活動軌跡,貼近學(xué)生熟悉的現(xiàn)實生活,不斷溝通生活中的數(shù)學(xué)與教科書上數(shù)學(xué)的聯(lián)系,使生活和數(shù)學(xué)融為一體?!?就努力改變傳統(tǒng)數(shù)學(xué)教育嚴(yán)重脫離實際的弊病而言,這一做法是完全正確的;但是,從更為深入的角度去分析,我們在此則又面
3、臨著這樣一個問題,即應(yīng)當(dāng)如何去處理“日常數(shù)學(xué)”與“學(xué)校數(shù)學(xué)”之間的關(guān)系。事實上,即使就最為初等的數(shù)學(xué)內(nèi)容而言,我們也可清楚地看到數(shù)學(xué)的抽象特點,而這就已包括了由“日常數(shù)學(xué)”向“學(xué)校數(shù)學(xué)”的重要過渡。例如,在幾何題材的教學(xué)中,無論是教師或?qū)W生都清楚地知道,我們的研究對象并非教師手中的那個木制三角尺,也不是在黑板上或紙上所畫的那個具體的三角形,而是更為一般的三角形的概念,這事實上就已包括了由現(xiàn)實原型向相應(yīng)的“數(shù)學(xué)模式”的過渡。再例如,正整數(shù)加減法顯然具有多種不同的現(xiàn)實原型,如加法所對應(yīng)的既可能是兩個量的聚合,也可能是同一個量的增加性變化,同樣地,減法所對應(yīng)的既可能是兩個量的比較,也可能是同一個量的
4、減少性變化;然而,在相應(yīng)的數(shù)學(xué)表達(dá)式中所說的現(xiàn)實意義、包括不同現(xiàn)實原型之間的區(qū)別(例如,這究竟表現(xiàn)了“二元的靜態(tài)關(guān)系”還是“一元的動態(tài)變化”)則完全被忽視了:它們所對應(yīng)的都是同一類型的表達(dá)式,如4+5=9、7-3=4等,而這事實上就包括了由特殊到一般的重要過渡。應(yīng)當(dāng)強(qiáng)調(diào)的是,以上所說的可說是一種“數(shù)學(xué)化”的過程,后者集中地體現(xiàn)了數(shù)學(xué)的本質(zhì)特點:數(shù)學(xué)可被定義為“模式的科學(xué)”,也就是說,在數(shù)學(xué)中我們并非是就各個特殊的現(xiàn)實情景從事研究的,而是由附屬于具體事物或現(xiàn)象的模型過渡到了更為普遍的“模式”。也正由于數(shù)學(xué)的直接研究對象是抽象的模式而非特殊的現(xiàn)實情景,這就為相應(yīng)的“純數(shù)學(xué)研究”提供了現(xiàn)實的可能性。
5、例如,就以上所提及的加減法運(yùn)算而言,由于其中涉及三個不同的量(兩個加數(shù)與它們的和,或被減數(shù)、減數(shù)與它們的差),因此,從純數(shù)學(xué)的角度去分析,我們完全可以提出這樣的問題,即如何依據(jù)其中的任意兩個量去求取第三個量。例如,就“量的比較”而言,除去兩個已知數(shù)的直接比較以外,我們顯然也可提出:“兩個數(shù)的差是3,其中較小的數(shù)是4,問另一個數(shù)是幾?”或者“兩個數(shù)的差是3,其中較大的數(shù)是4,問另一個數(shù)是幾?”我們在此事實上已由“具有明顯現(xiàn)實意義的量化模式”過渡到了“可能的量化模式”。綜上可見,即使就正整數(shù)的加減法此類十分初等的題材而言,就已十分清楚地體現(xiàn)了數(shù)學(xué)思維的一些重要特點,特別是體現(xiàn)了在現(xiàn)實意義與純數(shù)學(xué)研
6、究這兩者之間所存在的辯證關(guān)系。當(dāng)然,從理論的角度看,我們在此又應(yīng)考慮這樣的問題,即應(yīng)當(dāng)如何去認(rèn)識所說的純數(shù)學(xué)研究的意義。特別是,我們是否應(yīng)當(dāng)明確肯定由“日常數(shù)學(xué)”過渡到“學(xué)校數(shù)學(xué)”的必要性,或是應(yīng)當(dāng)唯一地堅持立足于現(xiàn)實生活。由于后一問題的全面分析已經(jīng)超出了本文的范圍,在此僅指明這樣一點:與現(xiàn)實意義在一定程度上的分離對于學(xué)生很好地把握相應(yīng)的數(shù)量關(guān)系是十分重要的。這正是國際上的相關(guān)研究、特別是近年來所興起的“民俗數(shù)學(xué)”研究的一個重要結(jié)論:盡管“日常數(shù)學(xué)”具有密切聯(lián)系實際的優(yōu)點,但也有著明顯的局限性。例如,如果僅僅依靠“自發(fā)的數(shù)學(xué)能力”,人們往往就不善于從反面去思考問題,與此相對照,通過學(xué)校中的學(xué)習(xí)
7、,上述的情況就會有很大改變,這就是說,純數(shù)學(xué)的研究“在幫助學(xué)生學(xué)會使用逆運(yùn)算來解決問題方面有著明顯的效果”;另外,同樣重要的是,如果局限于特定的現(xiàn)實情景,所學(xué)到的數(shù)學(xué)知識在“可遷移性”方面也會表現(xiàn)出很大的局限性。一般地說,學(xué)校中的數(shù)學(xué)學(xué)習(xí)就是對學(xué)生經(jīng)由日常生活所形成的數(shù)學(xué)知識進(jìn)行鞏固、適當(dāng)重組、擴(kuò)展和組織化的過程,這就意味著由孤立的數(shù)學(xué)事實過渡到了系統(tǒng)的知識結(jié)構(gòu),以及對于人類文化的必要繼承。這正如著名數(shù)學(xué)教育家斯根普所指出的:“兒童來到學(xué)校雖然還未接受正式教導(dǎo),但所具備的數(shù)學(xué)知識卻比預(yù)料的多他們所需要的幫助是從(學(xué)校教學(xué))活動中組織和鞏固他們的非正規(guī)知識,同時需擴(kuò)展他們這種知識,使其與我們社會
8、文化部分中的高度緊密的知識體系相結(jié)合?!?當(dāng)然,我們還應(yīng)明確肯定數(shù)學(xué)知識向現(xiàn)實生活“復(fù)歸”的重要性。這正如著名數(shù)學(xué)家、數(shù)學(xué)教育家弗賴登塔爾所指出的:“數(shù)學(xué)的力量源于它的普遍性。人們可以用同樣的數(shù)去對各種不同的集合進(jìn)行計數(shù),也可以用同樣的數(shù)去對各種不同的量進(jìn)行度量。盡管運(yùn)算(等)所涉及的方面十分豐富,但又始終是同一個運(yùn)算這即是借助于算法所表明的事實。作為計算者人們?nèi)菀淄浧渌婕暗臄?shù)以及他所面對的文字題中的算術(shù)問題的來源。但是,為了真正理解這種存在于多樣性之中的簡單性,在計算的同時我們又必須能夠由算法的簡單性回到多樣化的現(xiàn)實?!?總的來說,這就應(yīng)當(dāng)被看成“數(shù)學(xué)化”這一思維方式的完整表述,即其不僅
9、直接涉及如何由現(xiàn)實原型抽象出相應(yīng)的數(shù)學(xué)概念或問題,而且也包括了對于數(shù)量關(guān)系的純數(shù)學(xué)研究,以及由數(shù)學(xué)知識向現(xiàn)實生活的“復(fù)歸”。另外,相對于具體知識內(nèi)容的學(xué)習(xí)而言,我們應(yīng)當(dāng)更加注意如何幫助學(xué)生很好地去掌握“數(shù)學(xué)化”的思想,我們應(yīng)當(dāng)從這樣的角度去理解“情境設(shè)置”與“純數(shù)學(xué)研究”的意義。這正如弗賴登塔爾所指出的:“數(shù)學(xué)化是一條保證實現(xiàn)數(shù)學(xué)整體結(jié)構(gòu)的廣闊途徑情境和模型,問題與求解這些活動作為必不可少的局部手段是重要的,但它們都應(yīng)該服從于總的方法?!?二、凝聚:算術(shù)思維的基本形式由以下關(guān)于算術(shù)思維基本形式的分析可以看出,思維的分析相對于具體知識內(nèi)容的教學(xué)而言并非某種外加的成分,而是有著重要的指導(dǎo)意義。具體
10、地說,這正是現(xiàn)代關(guān)于數(shù)學(xué)思維研究的一項重要成果,即指明了所謂的“凝聚”,也即由“過程”向“對象”的轉(zhuǎn)化構(gòu)成了算術(shù)以及代數(shù)思維的基本形式,這也就是說,在數(shù)學(xué)特別是算術(shù)和代數(shù)中有不少概念在最初是作為一個過程得到引進(jìn)的,但最終卻又轉(zhuǎn)化成了一個對象對此我們不僅可以具體地研究它們的性質(zhì),也可以此為直接對象去施行進(jìn)一步的運(yùn)算。例如,加減法在最初都是作為一種過程得到引進(jìn)的,即代表了這樣的“輸入輸出”過程:由兩個加數(shù)(被減數(shù)與減數(shù))我們就可求得相應(yīng)的和(差);然而,隨著學(xué)習(xí)的深入,這些運(yùn)算又逐漸獲得了新的意義:它們已不再僅僅被看成一個過程,而且也被認(rèn)為是一個特定的數(shù)學(xué)對象,我們可具體地去指明它們所具有的各種性
11、質(zhì),如交換律、結(jié)合律等,從而,就其心理表征而言,就已經(jīng)歷了一個“凝聚”的過程,即由一個包含多個步驟的運(yùn)作過程凝聚成了單一的數(shù)學(xué)對象。再如,有很多教師認(rèn)為,分?jǐn)?shù)應(yīng)當(dāng)定義為“兩個整數(shù)相除的值”而不是“兩個整數(shù)的比”,這事實上也可被看成包括了由過程向?qū)ο蟮霓D(zhuǎn)變,這就是說,就分?jǐn)?shù)的掌握而言我們不應(yīng)停留于整數(shù)的除法這樣一種運(yùn)算,而應(yīng)將其直接看成一種數(shù),我們可以此為對象去實施加減乘除等運(yùn)算。對于所說的“凝聚”可進(jìn)一步分析如下:第一,“凝聚”事實上可被看成“自反性抽象”的典型例子,而后者則又可以說集中地體現(xiàn)了數(shù)學(xué)的高度抽象性,即“是把已發(fā)現(xiàn)結(jié)構(gòu)中抽象出來的東西射或反射到一個新的層面上,并對此進(jìn)行重新建構(gòu)”。
12、5這正如著名哲學(xué)家、心理學(xué)家皮亞杰所指出的:“全部數(shù)學(xué)都可以按照結(jié)構(gòu)的建構(gòu)來考慮,而這種建構(gòu)始終是完全開放的當(dāng)數(shù)學(xué)實體從一個水平轉(zhuǎn)移到另一個水平時,它們的功能會不斷地改變;對這類實體進(jìn)行的運(yùn)演,反過來,又成為理論研究的對象,這個過程在一直重復(fù)下去,直到我們達(dá)到了一種結(jié)構(gòu)為止,這種結(jié)構(gòu)或者正在形成更強(qiáng)的結(jié)構(gòu),或者在由更強(qiáng)的結(jié)構(gòu)來予以結(jié)構(gòu)化。”6例如,由加法到乘法以及由乘法到乘方的發(fā)展顯然也可被看成更高水平上的不斷“建構(gòu)”。第二,以色列著名數(shù)學(xué)教育家斯法德(A.Sfard)指出,“凝聚”主要包括以下三個階段:(1)內(nèi)化;(2)壓縮;(3)客體化。其中,“內(nèi)化”和“壓縮”可視為必要的準(zhǔn)備。前者是指用
13、思維去把握原先的視覺性程序,后者則是指將相應(yīng)的過程壓縮成更小的單元,從而就可從整體上對所說的過程作出描述或進(jìn)行反思我們在此不僅不需要實際地去實施相關(guān)的運(yùn)作,還可從更高的抽象水平對整個過程的性質(zhì)作出分析;另外,相對于前兩個階段而言,“客體化”則代表了質(zhì)的變化,即用一種新的視角去看一件熟悉的事物:原先的過程現(xiàn)在變成了一個靜止的對象。容易看出,上述的分析對于我們改進(jìn)教學(xué)也具有重要的指導(dǎo)意義。例如,所說的“內(nèi)化”就清楚地表明了這樣一點:我們既應(yīng)積極提倡學(xué)生的動手實踐,但又不應(yīng)停留于“實際操作”,而應(yīng)十分重視“活動的內(nèi)化”,因為,不然的話,就不可能形成任何真正的數(shù)學(xué)思維。另外,在不少學(xué)者看來,以上的分析
14、在一定程度上表明了“熟能生巧”這一傳統(tǒng)做法的合理性。第三,由“過程”向“對象”的過渡不應(yīng)被看成一種單向的運(yùn)動;恰恰相反,這兩者應(yīng)被看成同一概念心理表征的不同側(cè)面,我們應(yīng)善于依據(jù)不同的情景與需要在這兩者之間作出必要的轉(zhuǎn)換,包括由“過程”轉(zhuǎn)向“對象”,以及由“對象”重新回到“過程”。例如,在求解代數(shù)方程時,我們顯然應(yīng)將相應(yīng)的表達(dá)式,如(x+3)2=1,看成單一的對象,而非具體的計算過程,不然的話,就會出現(xiàn)(x+3)2=1=x2+6x+9=1=這樣的錯誤;然而,一旦求得了方程的解,如x=-2和-4,作為一種檢驗,我們又必須將其代入原來的表達(dá)式進(jìn)行檢驗,而這時所采取的則就是一種“過程”的觀點。正因為在
15、“過程”和“對象”之間存在所說的相互依賴、互相轉(zhuǎn)化的辯證關(guān)系,因此,一些學(xué)者提出,我們應(yīng)把相應(yīng)的數(shù)學(xué)概念看成一種“過程對象對偶體”procept,這是由“過程”(process)和(作為對象的)“概念”(concept)這兩個詞組合而成的。,即應(yīng)當(dāng)認(rèn)為其同時具有“過程”與“對象”這樣兩個方面的性質(zhì)。再者,我們又應(yīng)很好地去把握相應(yīng)的思維過程(可稱為“過程對象性思維”proceptual thinking)的以下特征:(1)“對偶性”,是指在“過程”與相應(yīng)的“對象”之間所存在的相互依存、互相轉(zhuǎn)化的辯證關(guān)系;(2)“含糊性”,這集中地體現(xiàn)于相應(yīng)的符號表達(dá)式:它既可以代表所說的運(yùn)作過程,也可以代表經(jīng)由
16、凝聚所生成的特定數(shù)學(xué)對象;(3)靈活性,是指我們應(yīng)根據(jù)情境的需要自由地將符號看成過程或概念。特殊地,數(shù)學(xué)中常常會用幾種不同的符號去表征同一個對象,從而,在這樣的意義上,上述的“靈活性”就獲得了更為廣泛的意義:這不僅是指“過程”與“對象”之間的轉(zhuǎn)化,而且也是指不同的“過程對象對偶體”之間的轉(zhuǎn)化。例如,5不僅是3與2的和,也是1與4的和、7與2的差、1與5的積,等等。綜上可見,在算術(shù)的教學(xué)中我們應(yīng)自覺地應(yīng)用和體現(xiàn)“凝聚”這樣一種思維方式。三、互補(bǔ)與整合:數(shù)學(xué)思維的一個重要特征以上關(guān)于“過程對象性思維”的論述顯然已從一個側(cè)面表明了互補(bǔ)與整合這一思維形式對于數(shù)學(xué)的特殊重要性。以下再以有理數(shù)的學(xué)習(xí)為例對
17、此作出進(jìn)一步的說明。首先,我們應(yīng)注意同一概念的不同解釋間的互補(bǔ)與整合。具體地說,與加減法一樣,有理數(shù)的概念也存在多種不同的解釋,如部分與整體的關(guān)系,商,算子或函數(shù),度量,等等;但是,正如人們所已普遍認(rèn)識到了的,就有理數(shù)的理解而言,關(guān)鍵恰又在于不應(yīng)停留于某種特定的解釋,更不能將各種解釋看成互不相關(guān)、彼此獨(dú)立的;而應(yīng)對有理數(shù)的各種解釋(或者說,相應(yīng)的心理建構(gòu))很好地加以整合,也即應(yīng)當(dāng)將所有這些解釋都看成同一概念的不同側(cè)面,并能根據(jù)情況與需要在這些解釋之間靈活地作出必要的轉(zhuǎn)換。例如,在教學(xué)中人們往往唯一地強(qiáng)調(diào)應(yīng)從“部分與整體的關(guān)系”這一角度去理解有理數(shù),特別是,分?jǐn)?shù)常常被想象成“圓的一個部分”。然而
18、,實踐表明,局限于這一心理圖像必然會造成一定的學(xué)習(xí)困難、甚至是嚴(yán)重的概念錯誤。例如,如果局限于上述的解釋,就很難對以下算法的合理性作出解釋:(5/7)÷(3/4)=(5/7)×(4/3)=其次,我們應(yīng)注意不同表述形式之間的相互補(bǔ)充與相互作用。這也正是新一輪數(shù)學(xué)課程改革的一個重要特征,即突出強(qiáng)調(diào)學(xué)生的動手實踐、主動探索與合作交流:“有效的數(shù)學(xué)學(xué)習(xí)活動不能單純地依賴模仿與記憶,動手實踐、自主探索與合作交流是學(xué)生學(xué)習(xí)數(shù)學(xué)的重要方式教師應(yīng)激發(fā)學(xué)生的學(xué)習(xí)積極性,向?qū)W生提供充分從事數(shù)學(xué)活動的機(jī)會,幫助他們在自主探索和合作交流的過程中真正理解和掌握基本的數(shù)學(xué)知識與技能、數(shù)學(xué)思想和方法,獲
19、得廣泛的數(shù)學(xué)活動經(jīng)驗?!?(2)由于實踐活動(包括感性經(jīng)驗)構(gòu)成了數(shù)學(xué)認(rèn)識活動的重要基礎(chǔ),合作交流顯然應(yīng)被看成學(xué)習(xí)活動社會性質(zhì)的直接體現(xiàn)和必然要求,因此,從這樣的角度去分析,上述的主張就是完全合理的;然而,需要強(qiáng)調(diào)的是,除去對于各種學(xué)習(xí)方式與表述形式的直接肯定以外,我們應(yīng)更加重視在不同學(xué)習(xí)方式或表述形式之間所存在的重要聯(lián)系與必要互補(bǔ)。這正如美國學(xué)者萊許(R.Lesh)等所指出的:“實物操作只是數(shù)學(xué)概念發(fā)展的一個方面,其他的表述方式如圖像,書面語言、符號語言、現(xiàn)實情景等同樣也發(fā)揮了十分重要的作用?!痹俅?,我們應(yīng)清楚地看到解題方法的多樣性及其互補(bǔ)關(guān)系。眾所周知,大力提倡解題策略的多樣化也是新一輪數(shù)
20、學(xué)課程改革的一個重要特征:“由于學(xué)生生活背景和思考角度不同,所使用的方法必然是多樣的,教師應(yīng)當(dāng)尊重學(xué)生的想法,鼓勵學(xué)生獨(dú)立思考,提倡計算方法的多樣化?!?(53)當(dāng)然,在大力提倡解題策略多樣化的同時,我們還應(yīng)明確肯定思維優(yōu)化的必要性,這就是說,我們不應(yīng)停留于對于不同方法在數(shù)量上的片面追求,而應(yīng)通過多種方法的比較幫助學(xué)生學(xué)會鑒別什么是較好的方法,包括如何依據(jù)不同的情況靈活地去應(yīng)用各種不同的方法。顯然,后者事實上也就從另一個角度更為清楚地表明了“互補(bǔ)與整合”確應(yīng)被看成數(shù)學(xué)思維的一個重要特點。最后,我們應(yīng)清楚地看到在形式和直覺之間所存在的重要的互補(bǔ)關(guān)系。特別是,就由“日常數(shù)學(xué)”向“學(xué)校數(shù)學(xué)”的過渡而
21、言,不應(yīng)被看成對于學(xué)生原先所已發(fā)展起來的素樸直覺的徹底否定;毋寧說,在此所需要的就是如何通過學(xué)校的數(shù)學(xué)學(xué)習(xí)使之“精致化”,以及隨著認(rèn)識的深化不斷發(fā)展起新的數(shù)學(xué)直覺。在筆者看來,我們應(yīng)當(dāng)從這樣的角度去理解課程標(biāo)準(zhǔn)中有關(guān)“數(shù)感”的論述,這就是,課程內(nèi)容的學(xué)習(xí)應(yīng)當(dāng)努力“發(fā)展學(xué)生的數(shù)感”,而后者又并非僅僅是指各種相關(guān)的能力,如計算能力等,還包含“直覺”的含義,即對于客觀事物和現(xiàn)象數(shù)量方面的某種敏感性,包括能對數(shù)的相對大小作出迅速、直接的判斷,以及能夠根據(jù)需要作出迅速的估算。當(dāng)然,作為問題的另一方面,我們又應(yīng)明確地肯定幫助學(xué)生牢固地掌握相應(yīng)的數(shù)學(xué)基本知識與基本技能的重要性,特別是,在需要的時候能對客觀事物和現(xiàn)象的數(shù)量方面作出準(zhǔn)確的刻畫和計算,并能對運(yùn)算的合理性作出適當(dāng)?shù)恼f明顯然,后者事實上已超出了“直覺”的范圍,即主要代表了一種自覺的努力。值得指出的是,除去
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 育嬰師安全意識考試試題及答案
- 系統(tǒng)規(guī)劃與管理師考試的資料準(zhǔn)備與學(xué)習(xí)推進(jìn)策略試題及答案
- 系統(tǒng)規(guī)劃與管理師考試中知識鞏固的有效策略試題及答案
- 牛排品牌測試題及答案
- 心態(tài)技能測試題及答案
- 科普2025鄉(xiāng)村全科執(zhí)業(yè)醫(yī)師考試知識試題及答案
- 藥劑類考試獨(dú)特策略試題及答案
- 莆田初三競賽試題及答案
- 統(tǒng)計學(xué)最難試題及答案
- 衛(wèi)生管理專業(yè)分析的證書考試試題及答案
- 煤炭行業(yè)的信息化與智能化轉(zhuǎn)型
- 抗生素合理應(yīng)用課件
- 2024年廣西廣投資本管理有限公司招聘筆試參考題庫含答案解析
- 酒店露營基地項目計劃書
- 小學(xué)趣味科學(xué) 3D打印技術(shù) 課件
- 輕量化目標(biāo)檢測模型的研究
- 醫(yī)療器械人因工程與可用性測試總結(jié)
- 管道中的流量與壓強(qiáng)的關(guān)系及特殊情況分析
- 完整版工資條模板
- 藥品配送投標(biāo)方案(技術(shù)標(biāo))
- 中風(fēng)病臨床路徑及表單
評論
0/150
提交評論