2020年浙江省湖州市中考數(shù)學試題_第1頁
2020年浙江省湖州市中考數(shù)學試題_第2頁
2020年浙江省湖州市中考數(shù)學試題_第3頁
2020年浙江省湖州市中考數(shù)學試題_第4頁
2020年浙江省湖州市中考數(shù)學試題_第5頁
免費預覽已結束,剩余26頁可下載查看

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

1、2020年浙江省湖州市中考數(shù)學試題學校:姓名:班級: 三:試卷第9頁,總6頁1 . 4的算術平方根是()A. -2B. 2C. ±2D. v22019年我國國內生產總值D. 9.91 106C.2 .近幾年來,我國經濟規(guī)模不斷擴大,綜合國力顯著增強.約991000億元,則數(shù)991000用科學記數(shù)法可表示為()A. 991M03B. 99.1 104C. 9.91 1053 .已知某幾何體的三視圖如圖所示,則該幾何體可能是(4 .如圖,已知四邊形 ABCD內接于。O, / ABC=70°,則/ ADC的度數(shù)是(A . 70°B. 110°C. 130D.

2、1405 .數(shù)據(jù)-1, 0, 3, 4, 4的平均數(shù)是(A. 4B. 3C. 2.5D. 26 .已知關于x的一元二次方程x2+bx-1=0,則下列關于該方程根的判斷, 正確的是()A .有兩個不相等的實數(shù)根B.有兩個相等的實數(shù)根C.沒有實數(shù)根D.實數(shù)根的個數(shù)與實數(shù) b的取值有關7.四邊形具有不穩(wěn)定性,對于四條邊長確定的四邊形.當內角度數(shù)發(fā)生變化時,其形狀也會隨之改變.如圖,改變正方形ABCD的內角,正方形ABCD變?yōu)榱庑蜛BCD'.若/D'AB=30°,則菱形ABCD的面積與正方形 ABCD的面積之比是()A. 1B.D.正2xOy中,直線y= 2x+2和直線y=

3、2 x+2分別交x軸于點A和8.已知在平面直角坐標系A . y= x+2B. y= J2x+2C. y=4x+2D. y=3x+233點B.則下列直線中,與 x軸的交點不在線段 AB上的直線是(。為圓心,OT為半徑的9 .如圖,已知 OT是Rt祥BO斜邊AB上的高線,AO=BO.以圓交OA于點C,過點C作。的切線CD,交AB于點D.則下列結論中錯誤的是()A . DC=DTB, AD=72DTC. BD=BOD. 2OC=5AC10 .七巧板是我國祖先的一項卓越創(chuàng)造,流行于世界各地.由邊長為2的正方形可以制作一副中國七巧板或一副日本七巧板,如圖1所示.分別用這兩副七巧板試拼如圖2中的平行四邊形

4、或矩形, 則這兩個圖形中,中國七巧板和日本七巧板能拼成的個數(shù)分別是( )圖1圖2A . 1 和 1B. 1 和 2C. 2和 1D. 2和 211 .計算:-2 - 1=.12.化簡:x 1x2 2x 113.如圖,已知AB是半圓。的直徑,弦 CD/AB, CD = 8, AB=10,則CD與AB之間的距離是14 .在一個布袋里放有1個白球和2個紅球,它們除顏色外其余都相同,從布袋里摸出1個球,記下顏色后放回,攪勻,再摸出 1個球.將2個紅球分別記為紅 I ,紅n .兩次摸球的所有可能的結果如表所示,第二次A次白紅I紅n白白,白白,紅I白,紅n紅I紅I ,白紅I ,紅I紅I ,紅n紅n紅n ,

5、白紅n ,紅I紅n ,紅n則兩次摸出的球都是紅球的概率是 15 .在每個小正方形的邊長為 1的網格圖形中,每個小正方形的頂點稱為格點,頂點都 是格點的三角形稱為格點三角形.如圖,已知RtAABC是6X6網格圖形中的格點三角形,則該圖中所有與 RtAABC相似的格點三角形中.面積最大的三角形的斜邊長是S C16 .如圖,已知在平面直角坐標系xOy中,RtOAB的直角頂點B在x軸的正半軸上,k點A在第一象限,反比例函數(shù)y= (x>0)的圖象經過 OA的中點C.交AB于點D,x連結CD.若 3CD的面積是2,則的值是.UX17 .計算:J8+I我 -11.3x 2 x18 .解不等式組 1-x

6、 2 319.有一種升降熨燙臺如圖 1所示,其原理是通過改變兩根支撐桿夾角的度數(shù)來調整熨燙臺的高度.圖2是這種升降熨燙臺的平面示意圖.AB和CD是兩根相同長度的活動支撐桿,點。是它們的連接點,OA=OC, h (cm)表示熨燙臺的高度.(1)如圖 21.若 AB=CD=110cm, /AOC=120°,求 h 的值;(2)愛動腦筋的小明發(fā)現(xiàn),當家里這種升降熨燙臺的高度為120cm時,兩根支撐桿的夾角/ AOC是74。(如圖2-2).求該熨燙臺支撐桿據(jù):sin37 ° =0.6dos37° =0,8sin53° =0.8 ./Q BJ丁HC甌1AB的長度(

7、結果精確到lcm). cos53° =0,6Q £i za! A C取220.為了解學生對網上在線學習效果的滿意度,某校設置了:非常滿意、滿意、基本滿意、不滿意四個選項,隨機抽查了部分學生,要求每名學生都只選其中的一項,并將抽查結果繪制成如圖統(tǒng)計圖(不完整)被抽查的學生網上在線學習效果嵩意度條形統(tǒng)計圖被抽查的學生網上在線學習克I果嬴意度扇形稅計圖請根據(jù)圖中信息解答下列問題:基本網意(1)求被抽查的學生人數(shù),并補全條形統(tǒng)計圖;上)(2)李常薔意 40%(溫馨提示:請畫在答題卷相對應的圖求扇形統(tǒng)計圖中表示 滿意”的扇形的圓心角度數(shù);(3)若該校共有1000名學生參與網上在線學習

8、,根據(jù)抽查結果,試估計該校對學習效果的滿意度是罪常滿意”或滿意”的學生共有多少人?21 .如圖,已知AABC是。的內接三角形,AD是。的直徑,連結BD,BC平分/ ABD .(1)求證:/ CAD=Z ABC;(2)若AD =6,求Cd的長.22 .某企業(yè)承接了 27000件產品的生產任務,計劃安排甲、乙兩個車間的共50名工人,合作生產20天完成.已知甲、乙兩個車間利用現(xiàn)有設備,工人的工作效率為:甲車間每人每天生產 25件,乙車間每人每天生產 30件.(1)求甲、乙兩個車間各有多少名工人參與生產?(2)為了提前完成生產任務,該企業(yè)設計了兩種方案:方案一甲車間租用先進生產設備,工人的工作效率可提

9、高20%,乙車間維持不變.方案二乙車間再臨時招聘若干名工人(工作效率與原工人相同),甲車間維持不變.設計的這兩種方案,企業(yè)完成生產任務的時間相同.求乙車間需臨時招聘的工人數(shù);若甲車間租用設備的租金每天900元,租用期間另需一次性支付運輸?shù)荣M用1500元;乙車間需支付臨時招聘的工人每人每天200元.問:從新增加的費用考慮,應選擇哪種方案能更節(jié)省開支?請說明理由.23.已知在AABC中,AC=BC=m, D是AB邊上的一點,將/ B沿著過點D的直線折 疊,使點B落在AC邊的點P處(不與點A, C重合),折痕交BC邊于點E.(1)特例感知 如圖1,若/ C=60°, D是AB的中點,求證:

10、AP= - AC;2(2)變式求異 如圖2,若/ C=90°, m= 6J2, AD =7,過點D作DHAC于點H,求DH和AP的長;(3)化歸探究 如圖3,若m=10, AB=12,且當AD = a時,存在兩次不同的折疊,使點B落在AC邊上兩個不同的位置,請直接寫出a的取值范圍.24.如圖,已知在平面直角坐標系xOy中,拋物線y=- x2+bx+c(c>0)的頂點為D,與y軸的交點為C.過點C的直線CA與拋物線交于另一點 A(點A在對稱軸左側),點B在AC的延長線上,連結 OA, OB, DA和DB.(1)如圖1,當AC/ x軸時,已知點A的坐標是(-2,1),求拋物線的解析

11、式;若四邊形AOBD是平行四邊形,求證:b2=4c.(2)如圖2,若b= - 2, 空=3 ,是否存在這樣的點 A,使四邊形AOBD是平行四邊AC 5形?若存在,求出點 A的坐標;若不存在,請說明理由.本卷由系統(tǒng)自動生成,請仔細校對后使用,答案僅供參考參考答案1. B【解析】試題分析:因22= 4,根據(jù)算術平方根的定義即可得 4的算術平方根是2.故答案選B.考點:算術平方根的定義.2. C【解析】【分析】科學記數(shù)法的表示形式為 aM0n的形式,其中1W|芥10, n為整數(shù).確定n的值時,要看把 原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當原數(shù)絕對值>10寸,n是

12、正數(shù);當原數(shù)的絕對值v1時,n是負數(shù).【詳解】解:將991000用科學記數(shù)法表示為: 9.91 M05.故選:C.【點睛】此題考查科學記數(shù)法的表示方法.科學記數(shù)法的表示形式為aX10n的形式,其中1W|洋10,n為整數(shù),表示時關鍵要正確確定a的值以及n的值.3. A【解析】【分析】主視圖、左視圖、俯視圖是分別從物體正面、左面和上面看所得到的圖形,從而得出答案.【詳解】.主視圖和左視圖是三角形,.幾何體是錐體,俯視圖的大致輪廓是圓,該幾何體是圓錐.故選:A.【點睛】本題考查了由三視圖確定幾何體的形狀,主要考查學生空間想象能力.4. B【解析】 【分析】根據(jù)圓內接四邊形的對角互補計算即可.【詳解】

13、四邊形 ABCD 內接于。O, / ABC=70°,ADC=180° / ABC=180° 70 =110°,故選:B.【點睛】本題考查了圓內接四邊形的性質,掌握圓內接四邊形的對角互補是解題的關鍵.5. D【解析】【分析】 根據(jù)題目中的數(shù)據(jù),可以求得這組數(shù)據(jù)的平均數(shù),本題得以解決.解:x= 1 0 3 4 4 -2, 5本題考查算術平均數(shù),解答本題的關鍵是明確算術平均數(shù)的計算方法.6. A【解析】【分析】先計算出判別式的值,再根據(jù)非負數(shù)的性質判斷 >0,然后利用判別式的意義對各選項進行判斷.【詳解】解:= = b2 4X ( 1) = b2+4 &

14、gt;0,,方程有兩個不相等的實數(shù)根.故選:A.【點睛】本題考查了根的判別式:一元二次方程ax2+bx+c=0 (aw 0)的根與 =b2-4ac有如下關系:當4> 0時,方程有兩個不相等的實數(shù)根;當 =0時,方程有兩個相等的實數(shù)根;當<0時,方程無實數(shù)根.7. B【解析】【分析】如圖,連接 DD,延長匕D/交AD于E,由菱形ABC / DJ可得AB / C,D,進一步說明/ED/D=30°,得到菱形AE=1AD;又由正方形ABCD,得到AB=AD,即菱形的高為AB 2的一半,然后分別求出菱形 ABC / D/和正方形ABCD的面積,最后求比即可. 【詳解】解:如圖:延長

15、 P D/交AD于E 菱形 ABC / D,AB / C,D, / D,AB=30 ° ./A Dz E=Z Dz AB=30 °AE= AD 2又正方形ABCD:AB=AD,即菱形的高為AB的一半12c 麥形ABCD的面積為一AB ,正方形ABCD的面積為AB2.2 菱形ABCD'的面積與正方形 ABCD的面積之比是 1 .2故答案為B.【點睛】本題主要考出了正方形的性質、菱形的性質以及含30。直角三角形的性質,其中表示出菱形ABC D的面積是解答本題的關鍵.8. C【解析】分別求出點A、B坐標,再根據(jù)各選項解析式求出與x軸交點坐標,判斷即可.【詳解】解:.直線y

16、=2x+2和直線y=2x+2分別交x軸于點A和點B.3A (T, 0), B (- 3, 0)A. y = x+2與x軸的交點為(-2, 0);故直線y = x+2與x軸的交點在線段 AB上;B. y= J2x+2與x軸的交點為(- J2,°);故直線y= J2 x+2與x軸的交點在線段 AB 上;C. y=4x+2與x軸的交點為(- 1,0);故直線y= 4x+2與x軸的交點不在線段 AB上;D. y="3x+2與x軸的交點為(- J3, 0);故直線y= Z*x+2與x軸的交點在線段33AB上;故選:C【點睛】本題考查了求直線與坐標軸的交點,注意求直線與x軸交點坐標,即

17、把y=0代入函數(shù)解析式.9. DA正確;可證得AADC是CD=CT ,根據(jù)全等三角形C正確;根據(jù)切線的判定知 DT是。O的切線,根據(jù)切線長定理可判斷選項等腰直角三角形,可計算判斷選項B正確;根據(jù)切線的性質得到的性質得到/ DOC= / TOC ,根據(jù)三角形的外角的性質可判斷選項解:如圖,連接 OD. . OT 是半徑,OTLAB, .DT是。的切線, .DC是。的切線,DC=DT,故選項 A正確; OA=OB, /AOB=90°,/ A=Z B=45 ,DC是切線, CDXOC, ./ ACD=90°,.A=/ADC=45°,AC=CD=DT,.AD= 72 CD

18、= 72 DT,故選項 B 正確; . OD=OD, OC=OT, DC =DT , . DOCA DOT (SS§, ./ DOC = Z DOT, . OA=OB, OTXAB, Z AOB=90°, ./ AOT=ZBOT=45°, ./ DOT = Z DOC=22.5 °, ./ BOD = Z ODB=67.5 °,BO=BD,故選項C正確;OA=OB , Z AOB=90 ° , OT±AB ,設。的半徑為2, . OT=OC=AT=BT=2 ,OA=OB=2 2,.殷 2A2、2 i 2, OC 252OC

19、5AC故選項D錯誤;故選:D.【點睛】本題考查了切線的性質,圓的有關知識,等腰直角三角形的性質,全等三角形的判定和性質, 正確的識別圖形、靈活運用這些性質進行推理是本題的關鍵.10 . D【解析】【分析】解答此題要熟悉中國和日本七巧板的結構,中國七巧板的結構:五個等腰直角三角形,有大、小兩對全等三角形;一個正方形;一個平行四邊形;日本七巧板的結構:三個等腰直角三角形,一個直角梯形,一個等腰梯形,一個平行四邊形,一個正方形,根據(jù)這些圖形的性質便 可解答.【詳解】解:中國七巧板和日本七巧板能拼成的個數(shù)都是2,如圖所示:曰本七巧板的拼法故選:D.【點睛】 此題是一道趣味性探索題,結合我國傳統(tǒng)玩具七巧

20、板,用七巧板來拼接圖形,可以培養(yǎng)學生 動手能力,展開學生的豐富想象力.11 .-3【解析】【分析】根據(jù)有理數(shù)減法的運算法則計算即可.【詳解】2 1=-3故答案為:-3.【點睛】本題主要考查了有理數(shù)減法的運算方法,熟練掌握運算法則是解題的關鍵. 1 12.x 1【解析】【分析】先將分母因式分解,再根據(jù)分式的基本性質約分即可.【詳解】x 1x2 2x 1x 1=(x 1)21=.x 1一,1故答案為:.x 1【點睛】本題考查了分式的除法以及利用完全平方公式因式分解,解答本題的關鍵是掌握分式的基本性質以及因式分解的方法.13. 3【解析】【分析】過點。作OHLCD于H,連接OC,先利用垂徑定理得到

21、CH=4,然后在Rt4CH中,利用勾股定理即可求解.【詳解】 解:過點。作OHLCD于H連接 OC,如圖,則 CH = DH=1CD = 4, 2在 RtAOCH 中,OH=后42 = 3,所以CD與AB之間的距離是3.故答案為3.【點睛】此題主要考查垂徑定理和勾股定理,熟練掌握垂徑定理和勾股定理是解題關鍵.由圖表求得所有等可能的結果及兩次都摸到紅球的情況,再利用概率公式求解即可求得答案.【詳解】解:根據(jù)圖表給可知,共有9種等可能的結果,兩次摸出的球都是紅球的有4種,4則兩次摸出的球都是紅球的概率為-;9,4故答案為:4 .本題考查了用列表法或畫樹狀圖法求概率.注意列表法或畫樹狀圖法可以不重復

22、不遺漏的列出所有可能的結果,適合于兩步完成的事件.用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.15. 5 五根據(jù)相似三角形的性質確定兩直角邊的比值為1:2,以及6X6網格圖形中,最長線段為6J2,進行嘗試,可確定 質、2/0、5/0為邊的這樣一組三角形滿足條件.【詳解】解:.在 RtAABC 中,AC=1, BC=2, ,AB=褥,AC: BC=1: 2,與Rt祥BC相似的格點三角形的兩直角邊的比值為1: 2,若該三角形最短邊長為 4,則另一直角邊長為 8,但在6X6網格圖形中,最長線段為6近,但此時畫出的直角三角形為等腰直角三角形,從而畫不出端點都在格點且長為8的線段,故最短直角邊長應小

23、于 4,在圖中嘗試,可畫出DE = J10, EF=2而,DF=5我的三角形,且="=”=、而,1 25 . ABCc/3A DEF , ./ DEF=/C=90°, 此時ADEF的面積為: 屈 >2 屈 -2=10, ADEF為面積最大的三角形,其斜邊長為:5 V2 故答案為:5、. 2 .【點睛】本題考查了作圖-應用與設計、相似三角形的判定和性質、勾股定理等知識,解題的關鍵是 學會利用數(shù)形結合的思想解決問題,屬于中考填空題中的壓軸題.16.【分析】作輔助線,構建直角三角形,利用反比例函數(shù)k的幾何意義得到 Saoce=Szobd = k,根據(jù)2OA的中點C,利用 O

24、CEsOAB得到面積比為1: 4,代入可得結論.【詳解】解:連接 OD ,過C作CE / AB,交x軸于E,答案第16頁,總20頁.一.一 k-.一-./ABO = 90 ,反比例函數(shù)y= - (x>0)的圖象經過 OA的中點C,xSacoe = Sabod = k , Saacd = Szocd = 2,2. CE/AB, . OCEsoab,S/ oceS*A OAB14,4Saoce= Sa oab,1- 4X k= 2+2+ k, 22故答案為:k本題考查了反比例函數(shù)比例系數(shù)k的幾何意義:在反比例函數(shù) y=圖象中任取一點,過這x一個點向x軸和y軸分別作垂線,與坐標軸圍成的矩形的面

25、積是定值|k| .在反比例函數(shù)的圖象上任意一點向坐標軸作垂線,這一點和垂足以及坐標原點所構成的三角形的面積是|k| ,且保持不變.也考查了相似三角形的判定與性質.17. 3歷 T根據(jù)算術平方根定義和絕對值的性質計算,再合并同類二次根式即可.原式=2/2 + . 2 1=3 - 21 ,【點睛】本題考查了算術平方根和絕對值以及同類二次根式的合并,解題的關鍵是正確理解定義.18. xv - 6【解析】【分析】先分別解每一個不等式,然后取其公共解即可.【詳解】1_解:3x 2 x ,一 x 2,3解得:xv 1;解得:xv -6.故不等式組的解集為 xv - 6.【點睛】本題考查解一元一次不等式組,

26、一般先求出其中各不等式的解集,再求出這些解集的公共部分.19. (1) 55; (2) 150cm.【解析】【分析】(1)作BELAC于E,利用等腰三角形的性質求得/OAC,然后解直角三角形即可求解;(2)作BELAC于E,利用等腰三角形的性質求得/OAC,解直角三角形即可求解.【詳解】(1)過點B作BEX AC于E,AE C. OA=OC, /AOC=120°, . / OAC = / OCA= 180-120- =30。,2h=BE=AB?sin30 =110X =55;2(2)過點B作BEX AC于E,. OA=OC, /AOC=74°, ./ OAC = /OCA=

27、180_741=53。,2AB=BEsin53 =120包8=150 (cm),即該熨燙臺支撐桿 AB的長度約為150cm.【點睛】本題考查了解直角三角形的應用,作出輔助線構造直角三角形,弄清題中的數(shù)據(jù)是解本題的關鍵.20. (1) 50人,條形圖見解析;(2) 108° (3) 700【解析】【分析】(1)從兩個統(tǒng)計圖中可知,在抽查人數(shù)中,“非常滿意”的人數(shù)為20人,占調查人數(shù)的40%,可求出調查人數(shù),進而求出“基本滿意”的人數(shù),即可補全條形統(tǒng)計圖;(2)樣本中“滿意”占調查人數(shù)的工,即30%,因此相應的圓心角的度數(shù)為360。的30%;50(3)樣本中“非常滿意”或“滿意”的占調查

28、人數(shù)的(20 15 ),進而估計總體中“非常50 50滿意”或“滿意”的人數(shù).【詳解】解:(1)抽查的學生數(shù):2040%= 50 (人),抽查人數(shù)中 基本滿意”人數(shù):50- 20 - 15- 1 = 14 (人),補全的條形統(tǒng)計圖如圖所示:(2) 360 X15=108°,50答:扇形統(tǒng)計圖中表示滿意”的扇形的圓心角度數(shù)為 108。;(3) 1000X 20 15 =700 (人),50 50”的約有700人.考查扇形統(tǒng)計圖、條形統(tǒng)計圖的意義和制作方法,從統(tǒng)計圖中獲取數(shù)量和數(shù)量之間的關系,是解決問題的前提,樣本估計總體是統(tǒng)計中常用的方法.21. (1)證明見解析;(2) 3?!窘馕觥?/p>

29、 【分析】(1)利用角平分線的性質結合圓周角定理即可證明;1(2)可證得cd=ac ,則CD的長為圓周長的一.4【詳解】(1)證明:: BC平分/ ABD, ./ DBC = /ABC, . / CAD = / DBC, ./ CAD = /ABC;(2)解:. / CAD=Z ABC,Cd =Ac,.AD是。的直徑,且AD=6, - Cd的長=1x兀法消兀.42【點睛】本題考查了角平分線的性質以及圓周角定理,證得cd =ac是解(2)題的關鍵.22. (1)甲車間有30名工人參與生產,乙車間各有 20名工人參與生產;(2)乙車間需臨 時招聘5名工人;選擇方案一能更節(jié)省開支.【解析】【分析】(

30、1)設甲、乙兩車間各有 x、y人,根據(jù)甲、乙兩車間共有 50人和甲、乙兩車間 20天共生 產零件總數(shù)之和為 2700個列方程組,解方程組即可解決問題;(2)設方案二中乙車間需臨時招聘m名工人,根據(jù)“完成生產任務的時間相同”列分式方程求解即可;先求得企業(yè)完成生產任務所需的時間,分別求得需增加的費用,再比較即可解答.【詳解】(1)設甲車間有x名工人參與生產,乙車間各有 y名工人參與生產,由題意得:x y 5020(25x 30y) 2700x 30解得y 20甲車間有30名工人參與生產,乙車間各有20名工人參與生產;(2)設方案二中乙車間需臨時招聘m名工人,由題意得:27000 2700030 2

31、5 (1 20%) 20 30 = 30 25 (20 m) 30解得m=5.經檢驗,m=5是原方程的解,且符合題意,乙車間需臨時招聘 5名工人;企業(yè)完成生產任務所需的時間為:二18 (天).2700030 25 (1 20%) 20 30,選擇方案一需增加的費用為900X18+1500 = 17700 (元).選擇方案二需增加的費用為5X18X200=18000 (元).17700 <18000,,選擇方案一能更節(jié)省開支.【點睛】本題主要考查了二元一次方程組的應用以及分式方程的應用,分析題意,找到合適的數(shù)量關系是解決問題的關鍵.23. (1)證明見解析;(2) 72 , 4 J2或 3

32、 J2 ; (3) 6<a< 20 . 23【解析】【分析】(1)根據(jù)等邊三角形的性質,運用等邊三角形內角都為60。以及三邊相等進行求解.(2)根據(jù)相似三角形的性質,運用對應邊成比例以及勾股定理進行求解.(3)根據(jù)三角函數(shù)以及三線合一性質,運用勾股定理以及比例關系進行求解.【詳解】(1)證明:. AC=BC, / C=60°, . ABC是等邊三角形, . AC = AB, / A= 60°,由題意,得 DB = DP, DA = DB, .DA=DP, . ADP使得等邊三角形, AP = AD= AB= AC. 22(2)解:: AC=BC=6 &,

33、/ C=90°, .AB= Jac2_bc2 = 5(6 62(6 折2 =12, DH LAC, . DH / BC,ADHc/dA ABC,DH _ AD = ,BC AB. AD = 7,本卷由系統(tǒng)自動生成,請仔細校對后使用,答案僅供參考DH6.2122將/ B沿過點D的直線折疊,情形一:當點B落在線段CH上的點Pi處時,如圖2-1中,Hpi= DR2 DH527 2 . Ai = AH + HPi = 4 72 ,情形二:當點B落在線段AH上的點P2處時,如圖2-2中,同法可證HP 2=.AP2=AH-HP2=3衣,綜上所述,滿足條件的 AP的值為4 J2或3 J2 .(3)

34、如圖3中,過點C作CHXABT H,過點D作DPXAC于P. AB= 12 .DPi=DB = AB AD=5. CA=CB, CHXAB,.AH = HB = 6,CH = <AC_AH2 = 102?62 = 8,PDAD當 DB= DP 時,設 BD= PD = x,則 AD= 12-x,一八 CH .tanA =AC8 x 1012 x一 x=163答案第22頁,總20頁AD = AB - BD=生,320 一使點B落在AC邊上兩個不同的位置.觀察圖形可知當 6QV 20時,存在兩次不同的折疊, 3【點睛】本題考查等邊三角形性質,勾股定理,相似三角形性質以及三角形函數(shù)的知識點,知識點的 靈活運用,以及通過對圖形的理解分析出結果的所以可能性是解決此類問題的關鍵所在.24. (1)y= - x2-2x+1 ;證明見解析;(2)存在這樣的點 A, A(-,)24【解析】【分析】(1)由點A(-2, 1)得到C(0, 1),利用待定系數(shù)法即可求解;b2作DE,x軸于E,交AB于點F ,利用頂點坐標及點 C的坐標

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論