2017年八年級(上)期末數(shù)學試卷兩套合集一內含全部答案解析_第1頁
2017年八年級(上)期末數(shù)學試卷兩套合集一內含全部答案解析_第2頁
2017年八年級(上)期末數(shù)學試卷兩套合集一內含全部答案解析_第3頁
2017年八年級(上)期末數(shù)學試卷兩套合集一內含全部答案解析_第4頁
2017年八年級(上)期末數(shù)學試卷兩套合集一內含全部答案解析_第5頁
已閱讀5頁,還剩45頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

1、.2017年八年級(上)期末數(shù)學試卷兩套合集一內含全部答案解析八年級(上)期末數(shù)學試卷一、選擇題(本大題共10小題,每小題3分,共30分)1下列各數(shù)、0.中,無理數(shù)的個數(shù)有()A1個B2個C3個D4個2下面二次根式是最簡二次根式的是()ABCD3下列計算正確的是()A =B =6CD4下列長度的線段不能構成直角三角形的是()A6,8,10B5,12,13C1.5,2,3D,35甲、乙、丙、丁四人進行射擊測試,每人10次射擊成績的平均數(shù)都均為8.8環(huán),方差分別為S甲2=0.63,S乙2=0.51,S丙2=0.48,S丁2=0.42,則四人中成績最穩(wěn)定的是()A甲B乙C丙D丁6下列四個命題中,真命

2、題有()兩條直線被第三條直線所截,內錯角相等如果1和2是對頂角,那么1=2三角形的一個外角大于任何一個內角如果x20,那么x0A1個B2個C3個D4個7如圖,下列條件中,能判定ABCD的是()A1=2B4=6C4=5D1+3=180°8已知方程組,則2(xy)3(3x+2y)的值為()A11B12C13D149若定義:f(a,b)=(a,b),g(m,n)=(m,n),例如f(1,2)=(1,2),g(4,5)=(4,5),則g(f(2,3)=()A(2,3)B(2,3)C(2,3)D(2,3)10已知函數(shù)y=kx+b的圖象如圖所示,則函數(shù)y=bx+k的圖象大致是()ABCD二、填空

3、題(本大題共6小題,每小題4分,共24分)11計算: =12某招聘考試分筆試和面試兩種其中筆試按60%、面試按40%計算加權平均數(shù)作為總成績小明筆試成績?yōu)?0分面試成績?yōu)?5分,那么小明的總成績?yōu)榉?3在ABC中,若三條邊的長度分別為9,12、15,則以兩個這樣的三角形所拼成的四邊形的面積是14已知點A(0,2m)和點B(1,m+1),直線ABx軸,則m=15如圖,ABBC,ABD的度數(shù)比DBC的度數(shù)的兩倍少15°,求出這兩個角的度數(shù)?設ABD和DBC的度數(shù)分別為x°,y°,根據(jù)題意所列方程組是16如圖,直線y=x+3與坐標軸分別交于點A、B,與直線y=x交于點C

4、,線段OA上的點Q以每秒1個長度單位的速度從點O出發(fā)向點A作勻速運動,運動時間為t秒,連接CQ若OQC是等腰直角三角形,則t的值為三、解答題(本大題共3小題,每小題6分,共18分)17計算:(2)(2+)+(2)218解方程組:19如圖,在平面直角坐標系中有一個ABC,頂點A(1,3),B(2,0),C(3,1)(1)畫出ABC關于y軸的對稱圖形A1B1C1(不寫畫法);點A關于x軸對稱的點坐標為點B關于y軸對稱的點坐標為點C關于原點對稱的點坐標為(2)若網(wǎng)格上的每個小正方形的邊長為1,則ABC的面積是四、解答題(本大題共3小題,每小題7分,共21分)20甲、乙兩位同學5次數(shù)學成績統(tǒng)計如表,他

5、們的5次總成績相同,小明根據(jù)他們的成績繪制了尚不完整的統(tǒng)計圖表,請同學們完成下列問題第1次第2次第3次第4次第5次甲成績9040704060乙成績705070a70甲、乙兩人的數(shù)學成績統(tǒng)計表(1)a=, =;(2)請完成圖中表示乙成績變化情況的折線;(3)S甲2=360,乙成績的方差是,可看出的成績比較穩(wěn)定(填“甲”或“乙”)從平均數(shù)和方差的角度分析,將被選中21已知:如圖,1+D=90°,BEFC,且DFBE與點G,并分別與AB、CD交于點F、D求證:ABCD(完成證明并寫出推理依據(jù))證明:DFBE(已知),2+=90°(),1+D=90°(已知),=(等量代換

6、),BECF(已知),2=C(),1=(),ABCD()22已知:用2輛A型車和1輛B型車裝滿貨物一次可運貨10噸; 用1輛A型車和2輛B型車裝滿貨物一次可運貨11噸某物流公司現(xiàn)有31噸貨物,計劃同時租用A型車a輛,B型車b輛,一次運完,且恰好每輛車都裝滿貨物根據(jù)以上信息,解答下列問題:1輛A型車和1輛B型車都裝滿貨物一次可分別運貨多少噸?請你幫該物流公司設計租車方案五、解答題(本大題共3小題,每小題9分,共27分)23如圖,ABCD中,BDAD,A=45°,E、F分別是AB,CD上的點,且BE=DF,連接EF交BD于O(1)求證:BO=DO;(2)若EFAB,延長EF交AD的延長線

7、于G,當FG=1時,求AD的長24甲、乙兩列火車分別從A、B兩城同時勻速駛出,甲車開往B城,乙車開往A城由于墨跡遮蓋,圖中提供的是兩車距B城的路程S甲(千米)、S乙(千米)與行駛時間t(時)的函數(shù)圖象的一部分(1)分別求出S甲、S乙與t的函數(shù)關系式(不必寫出t的取值范圍);(2)求A、B兩城之間的距離,及t為何值時兩車相遇;(3)當兩車相距300千米時,求t的值25如圖所示,在平面直角坐標系中,已知一次函數(shù)y=x+1的圖象與x軸,y軸分別交于A,B兩點,以AB為邊在第二象限內作正方形ABCD(1)求邊AB的長;(2)求點C,D的坐標;(3)在x軸上是否存在點M,使MDB的周長最???若存在,請求

8、出點M的坐標;若不存在,請說明理由參考答案與試題解析一、選擇題(本大題共10小題,每小題3分,共30分)1下列各數(shù)、0.中,無理數(shù)的個數(shù)有()A1個B2個C3個D4個【考點】無理數(shù)【分析】無理數(shù)就是無限不循環(huán)小數(shù)理解無理數(shù)的概念,一定要同時理解有理數(shù)的概念,有理數(shù)是整數(shù)與分數(shù)的統(tǒng)稱即有限小數(shù)和無限循環(huán)小數(shù)是有理數(shù),而無限不循環(huán)小數(shù)是無理數(shù)由此即可判定選擇項【解答】解:、是無理數(shù),故選:B2下面二次根式是最簡二次根式的是()ABCD【考點】最簡二次根式【分析】檢查最簡二次根式的兩個條件是否同時滿足,同時滿足的就是最簡二次根式,否則就不是【解答】解:A、被開方數(shù)含能開得盡方的因數(shù)或因式,故A錯誤;

9、B、被開方數(shù)含分母,故B錯誤;C、被開方數(shù)含分母,故C錯誤;D、被開方數(shù)不含分母;被開方數(shù)不含能開得盡方的因數(shù)或因式,故D正確;故選:D3下列計算正確的是()A =B =6CD【考點】實數(shù)的運算【分析】原式各項化簡得到結果,即可做出判斷【解答】解:A、原式=2=,正確;B、原式=,錯誤;C、+為最簡結果,錯誤;D、原式=2,錯誤,故選A4下列長度的線段不能構成直角三角形的是()A6,8,10B5,12,13C1.5,2,3D,3【考點】勾股定理的逆定理【分析】由勾股定理的逆定理,只要驗證兩小邊的平方和是否等于最長邊的平方,即可解答【解答】解:A、62+82=102,能構成直角三角形,不符合題意

10、;B、52+122=132,能構成直角三角形,不符合題意;C、1.52+2232,不能構成直角三角形,符合題意;D、()2+32=()2,能構成直角三角形,不符合題意故選:C5甲、乙、丙、丁四人進行射擊測試,每人10次射擊成績的平均數(shù)都均為8.8環(huán),方差分別為S甲2=0.63,S乙2=0.51,S丙2=0.48,S丁2=0.42,則四人中成績最穩(wěn)定的是()A甲B乙C丙D丁【考點】方差;算術平均數(shù)【分析】根據(jù)方差的意義可作出判斷方差是用來衡量一組數(shù)據(jù)波動大小的量,方差越小,表明這組數(shù)據(jù)分布比較集中,各數(shù)據(jù)偏離平均數(shù)越小,即波動越小,數(shù)據(jù)越穩(wěn)定【解答】解:S甲2=0.63,S乙2=0.51,S丙2

11、=0.48,S丁2=0.42,S甲2S乙2S丙2S丁2,故選D6下列四個命題中,真命題有()兩條直線被第三條直線所截,內錯角相等如果1和2是對頂角,那么1=2三角形的一個外角大于任何一個內角如果x20,那么x0A1個B2個C3個D4個【考點】命題與定理【分析】根據(jù)平行線的性質對進行判斷;根據(jù)對頂角的性質對進行判斷;根據(jù)三角形外角性質對進行判斷;根據(jù)非負數(shù)的性質對進行判斷【解答】解:兩條平行直線被第三條直線所截,內錯角相等,所以錯誤;如果1和2是對頂角,那么1=2,所以正確;三角形的一個外角大于任何一個不相鄰的內角,所以錯誤;如果x20,那么x0,所以錯誤故選A7如圖,下列條件中,能判定ABCD

12、的是()A1=2B4=6C4=5D1+3=180°【考點】平行線的判定【分析】根據(jù)平行線的判定定理,對各選項進行逐一判斷即可【解答】解:A1與2是對頂角,不能判定ABCD,故A錯誤;B當4=6時,根據(jù)內錯角相等,兩直線平行,可判定ABCD,故B正確;C4與5不是同位角、內錯角,不能判定ABCD,故C錯誤;D當1+3=180°時,1+2=180°,可得EFGH,不能判定ABCD,故D錯誤故選:B8已知方程組,則2(xy)3(3x+2y)的值為()A11B12C13D14【考點】解二元一次方程組【分析】將xy,3x+2y的值整體代入即可求解【解答】解:,2(xy)3(

13、3x+2y)=2×53×(1)=10+3=13答:2(xy)3(3x+2y)的值為13故選:C9若定義:f(a,b)=(a,b),g(m,n)=(m,n),例如f(1,2)=(1,2),g(4,5)=(4,5),則g(f(2,3)=()A(2,3)B(2,3)C(2,3)D(2,3)【考點】點的坐標【分析】根據(jù)新定義先求出f(2,3),然后根據(jù)g的定義解答即可【解答】解:根據(jù)定義,f(2,3)=(2,3),所以,g(f(2,3)=g(2,3)=(2,3)故選B10已知函數(shù)y=kx+b的圖象如圖所示,則函數(shù)y=bx+k的圖象大致是()ABCD【考點】一次函數(shù)圖象與系數(shù)的關系【

14、分析】根據(jù)一次函數(shù)與系數(shù)的關系,由函數(shù)y=kx+b的圖象位置可得k0,b0,然后根據(jù)系數(shù)的正負判斷函數(shù)y=bx+k的圖象位置【解答】解:函數(shù)y=kx+b的圖象經過第一、二、三象限,k0,b0,函數(shù)y=bx+k的圖象經過第一、二、四象限故選C二、填空題(本大題共6小題,每小題4分,共24分)11計算: =30【考點】二次根式的乘除法【分析】系數(shù)和被開方數(shù)分別相乘,最后化成最簡二次根式即可【解答】解:3×2=6=30,故答案為:3012某招聘考試分筆試和面試兩種其中筆試按60%、面試按40%計算加權平均數(shù)作為總成績小明筆試成績?yōu)?0分面試成績?yōu)?5分,那么小明的總成績?yōu)?8分【考點】加權

15、平均數(shù)【分析】根據(jù)筆試和面試所占的權重以及筆試成績和面試成績,列出算式,進行計算即可【解答】解:筆試按60%、面試按40%,總成績是(90×60%+85×40%)=88(分);故答案為:8813在ABC中,若三條邊的長度分別為9,12、15,則以兩個這樣的三角形所拼成的四邊形的面積是108【考點】勾股定理的逆定理【分析】首先利用勾股定理的逆定理,判定給三角形的形狀,求拼成的四邊形的面積就是這樣兩個三角形的面積和,由此列式解答即可【解答】解:92+122=225,152=225,92+122=152,這個三角形為直角三角形,且9和12是兩條直角邊;拼成的四邊形的面積=

16、5;9×12×2=108故答案為:10814已知點A(0,2m)和點B(1,m+1),直線ABx軸,則m=1【考點】坐標與圖形性質【分析】根據(jù)平行于x軸的直線上的點的縱坐標相同,列出方程求解即可【解答】解:A(0,2m)和點B(1,m+1),直線ABx軸,m+1=2m,解得m=1故答案為:115如圖,ABBC,ABD的度數(shù)比DBC的度數(shù)的兩倍少15°,求出這兩個角的度數(shù)?設ABD和DBC的度數(shù)分別為x°,y°,根據(jù)題意所列方程組是【考點】由實際問題抽象出二元一次方程組【分析】根據(jù)兩角互余和題目所給的關系,列出方程組【解答】解:設ABD和DBC的

17、度數(shù)分別為x°、y°,由題意得,故答案為:16如圖,直線y=x+3與坐標軸分別交于點A、B,與直線y=x交于點C,線段OA上的點Q以每秒1個長度單位的速度從點O出發(fā)向點A作勻速運動,運動時間為t秒,連接CQ若OQC是等腰直角三角形,則t的值為2或4【考點】一次函數(shù)圖象上點的坐標特征;等腰直角三角形【分析】分為兩種情況,畫出圖形,根據(jù)等腰三角形的性質求出即可【解答】解:由,得,C(2,2);如圖1,當CQO=90°,CQ=OQ,C(2,2),OQ=CQ=2,t=2,如圖2,當OCQ=90°,OC=CQ,過C作CMOA于M,C(2,2),CM=OM=2,QM

18、=OM=2,t=2+2=4,即t的值為2或4,故答案為:2或4;三、解答題(本大題共3小題,每小題6分,共18分)17計算:(2)(2+)+(2)2【考點】二次根式的混合運算【分析】原式利用平方差公式,完全平方公式化簡,計算即可得到結果【解答】解:原式=45+44+2=518解方程組:【考點】解二元一次方程組【分析】根據(jù)方程組的特點采用相應的方法求解,用加減法較簡單【解答】解:×2+,得11x=22,x=2,代入,得y=1所以方程組的解為19如圖,在平面直角坐標系中有一個ABC,頂點A(1,3),B(2,0),C(3,1)(1)畫出ABC關于y軸的對稱圖形A1B1C1(不寫畫法);點

19、A關于x軸對稱的點坐標為(1,3)點B關于y軸對稱的點坐標為(2,0)點C關于原點對稱的點坐標為(3,1)(2)若網(wǎng)格上的每個小正方形的邊長為1,則ABC的面積是9【考點】作圖-軸對稱變換【分析】(1)直接利用關于坐標軸對稱點的性質得出各對應點位置即可;(2)利用ABC所在矩形面積減去周圍三角形面積進而得出答案【解答】解:(1)點A關于x軸對稱的點坐標為 (1,3);點B關于y軸對稱的點坐標為:(2,0);點C關于原點對稱的點坐標為:(3,1);故答案為:(1,3),(2,0),(3,1);(2)ABC的面積是:4×5×2×4×3×3×

20、;1×5=9故答案為:9四、解答題(本大題共3小題,每小題7分,共21分)20甲、乙兩位同學5次數(shù)學成績統(tǒng)計如表,他們的5次總成績相同,小明根據(jù)他們的成績繪制了尚不完整的統(tǒng)計圖表,請同學們完成下列問題第1次第2次第3次第4次第5次甲成績9040704060乙成績705070a70甲、乙兩人的數(shù)學成績統(tǒng)計表(1)a=40, =60;(2)請完成圖中表示乙成績變化情況的折線;(3)S甲2=360,乙成績的方差是160,可看出乙的成績比較穩(wěn)定(填“甲”或“乙”)從平均數(shù)和方差的角度分析,乙將被選中【考點】方差;折線統(tǒng)計圖;算術平均數(shù)【分析】(1)根據(jù)題意和平均數(shù)的計算公式計算即可;(2)根

21、據(jù)求出的a的值,完成圖中表示乙成績變化情況的折線;(3)根據(jù)方差的計算公式計算,根據(jù)方差的性質進行判斷即可【解答】解:(1)他們的5次總成績相同,90+40+70+40+60=70+50+70+a+70,解得a=40,(70+50+70+40+70)=60,故答案為:40;60;(2)如圖所示:(3)S2乙= (7060)2+(5060)2+(7060)2+(4060)2+(7060)2=160S2乙S甲2,乙的成績穩(wěn)定,從平均數(shù)和方差的角度分析,乙將被選中,故答案為:160;乙;乙21已知:如圖,1+D=90°,BEFC,且DFBE與點G,并分別與AB、CD交于點F、D求證:ABC

22、D(完成證明并寫出推理依據(jù))證明:DFBE(已知),2+D=90°(三角形內角和定理),1+D=90°(已知),1=2(等量代換),BECF(已知),2=C(兩直線平行,同位角相等),1=C(等量代換),ABCD(內錯角相等,兩直線平行)【考點】平行線的判定與性質【分析】根據(jù)DFBE利用垂直的定義以及三角形內角和定理即可得出2+D=90°,利用等量代換即可得出1=2,再根據(jù)平行線的性質可得出2=C,進而可得出1=C,利用平行線的判定定理即可得出ABCD【解答】證明:DFBE(已知),2+D=90°(三角形內角和定理),1+D=90°(已知),1

23、=2(等量代換),BECF(已知),2=C(兩直線平行,同位角相等),1=C(等量代換),ABCD(內錯角相等,兩直線平行)故答案為:D;三角形內角和定理;1;2;兩直線平行,同位角相等;C;等量代換;內錯角相等,兩直線平行22已知:用2輛A型車和1輛B型車裝滿貨物一次可運貨10噸; 用1輛A型車和2輛B型車裝滿貨物一次可運貨11噸某物流公司現(xiàn)有31噸貨物,計劃同時租用A型車a輛,B型車b輛,一次運完,且恰好每輛車都裝滿貨物根據(jù)以上信息,解答下列問題:1輛A型車和1輛B型車都裝滿貨物一次可分別運貨多少噸?請你幫該物流公司設計租車方案【考點】二元一次方程組的應用;二元一次方程的應用【分析】(1)

24、根據(jù)“用2輛A型車和1輛B型車載滿貨物一次可運貨10噸;”“用1輛A型車和2輛B型車載滿貨物一次可運貨11噸”,分別得出等式方程,組成方程組求出即可;(2)由題意理解出:3a+4b=31,解此二元一次方程,求出其整數(shù)解,得到三種租車方案【解答】解:(1)設每輛A型車、B型車都裝滿貨物一次可以分別運貨x噸、y噸,依題意列方程組得:,解得:答:1輛A型車裝滿貨物一次可運3噸,1輛B型車裝滿貨物一次可運4噸(2)結合題意和(1)得:3a+4b=31,a=,a、b都是正整數(shù),或或答:有3種租車方案:方案一:A型車9輛,B型車1輛;方案二:A型車5輛,B型車4輛;方案三:A型車1輛,B型車7輛五、解答題

25、(本大題共3小題,每小題9分,共27分)23如圖,ABCD中,BDAD,A=45°,E、F分別是AB,CD上的點,且BE=DF,連接EF交BD于O(1)求證:BO=DO;(2)若EFAB,延長EF交AD的延長線于G,當FG=1時,求AD的長【考點】平行四邊形的性質;全等三角形的判定與性質;等腰直角三角形【分析】(1)通過證明ODF與OBE全等即可求得(2)由ADB是等腰直角三角形,得出A=45°,因為EFAB,得出G=45°,所以ODG與DFG都是等腰直角三角形,從而求得DG的長和EF=2,然后等腰直角三角形的性質即可求得【解答】(1)證明:四邊形ABCD是平行四

26、邊形,DC=AB,DCAB,ODF=OBE,在ODF與OBE中ODFOBE(AAS)BO=DO;(2)解:BDAD,ADB=90°,A=45°,DBA=A=45°,EFAB,G=A=45°,ODG是等腰直角三角形,ABCD,EFAB,DFOG,OF=FG,DFG是等腰直角三角形,ODFOBE(AAS)OE=OF,GF=OF=OE,即2FG=EF,DFG是等腰直角三角形,DF=FG=1,DG=DO,在等腰RTADB 中,DB=2DO=2=ADAD=2,24甲、乙兩列火車分別從A、B兩城同時勻速駛出,甲車開往B城,乙車開往A城由于墨跡遮蓋,圖中提供的是兩車距

27、B城的路程S甲(千米)、S乙(千米)與行駛時間t(時)的函數(shù)圖象的一部分(1)分別求出S甲、S乙與t的函數(shù)關系式(不必寫出t的取值范圍);(2)求A、B兩城之間的距離,及t為何值時兩車相遇;(3)當兩車相距300千米時,求t的值【考點】一次函數(shù)的應用【分析】(1)根據(jù)函數(shù)圖象可以分別求得S甲、S乙與t的函數(shù)關系式;(2)將t=0代入S甲=180t+600,即可求得A、B兩城之間的距離,然后將(1)中的兩個函數(shù)相等,即可求得t為何值時兩車相遇;(3)根據(jù)題意可以列出相應的方程,從而可以求得t的值【解答】解:(1)設S甲與t的函數(shù)關系式是S甲=kt+b,得,即S甲與t的函數(shù)關系式是S甲=180t+

28、600,設S乙與t的函數(shù)關系式是S甲=at,則120=a×1,得a=120,即S乙與t的函數(shù)關系式是S甲=120t;(2)將t=0代入S甲=180t+600,得S甲=180×0+600,得S甲=600,令180t+600=120t,解得,t=2,即A、B兩城之間的距離是600千米,t為2時兩車相遇;(3)由題意可得,|180t+600120t|=300,解得,t1=1,t3=3,即當兩車相距300千米時,t的值是1或325如圖所示,在平面直角坐標系中,已知一次函數(shù)y=x+1的圖象與x軸,y軸分別交于A,B兩點,以AB為邊在第二象限內作正方形ABCD(1)求邊AB的長;(2)

29、求點C,D的坐標;(3)在x軸上是否存在點M,使MDB的周長最小?若存在,請求出點M的坐標;若不存在,請說明理由【考點】一次函數(shù)綜合題【分析】(1)在直角三角形AOB中,由OA與OB的長,利用勾股定理求出AB的長即可;(2)過C作y軸垂線,過D作x軸垂線,分別交于點E,F(xiàn),可得三角形CBE與三角形ADF與三角形AOB全等,利用全等三角形對應邊相等,確定出C與D坐標即可;(3)作出B關于x軸的對稱點B,連接BD,與x軸交于點M,連接BD,BM,此時MDB周長最小,求出此時M的坐標即可【解答】解:(1)對于直線y=x+1,令x=0,得到y(tǒng)=1;令y=0,得到x=2,A(2,0),B(0,1),在R

30、tAOB中,OA=2,OB=1,根據(jù)勾股定理得:AB=; (2)作CEy軸,DFx軸,可得CEB=AFD=AOB=90°,正方形ABCD,BC=AB=AD,DAB=ABC=90°,DAF+BAO=90°,ABO+CBE=90°,DAF+ADF=90°,BAO+ABO=90°,BAO=ADF=CBE,BCEDAFABO,BE=DF=OA=2,CE=AF=OB=1,OE=OB+BE=2+1=3,OF=OA+AF=2+1=3,C(1,3),D(3,2);(3)找出B關于x軸的對稱點B,連接BD,與x軸交于點M,此時BMD周長最小,B(0,1

31、),B(0,1),設直線BD的解析式為y=kx+b,把B與D坐標代入得:,解得:,即直線BD的解析式為y=x1,令y=0,得到x=1,即M(1,0)2017年八年級(上)期末數(shù)學試卷一、選擇題(每小題3分,共24分)1下列說法中,正確的是()A(6)2的平方根是6B帶根號的數(shù)都是無理數(shù)C27的立方根是±3D立方根等于1的實數(shù)是12下列運算正確的是()Aa3a2=a6B(a2b)3=a6b3Ca8÷a2=a4Da+a=a23在ABC中,A,B,C的對邊分別記為a,b,c,下列結論中不正確的是()A如果AB=C,那么ABC是直角三角形B如果a2=b2c2,那么ABC是直角三角形

32、且C=90°C如果A:B:C=1:3:2,那么ABC是直角三角形D如果a2:b2:c2=9:16:25,那么ABC是直角三角形4如圖,在數(shù)軸上表示實數(shù)的點可能是()A點PB點QC點MD點N5下列結論正確的是()A有兩個銳角相等的兩個直角三角形全等B一條斜邊對應相等的兩個直角三角形全等C頂角和底邊對應相等的兩個等腰三角形全等D兩個等邊三角形全等6三角形的三邊長為a,b,c,且滿足(a+b)2=c2+2ab,則這個三角形是()A等邊三角形B鈍角三角形C直角三角形D銳角三角形7如圖,已知點P到AE、AD、BC的距離相等,下列說法:點P在BAC的平分線上;點P在CBE的平分線上;點P在BCD

33、的平分線上;點P在BAC,CBE,BCD的平分線的交點上其中正確的是()ABCD8如圖,在ACB中,有一點P在AC上移動,若AB=AC=5,BC=6,則AP+BP+CP的最小值為()A4.8B8C8.8D9.8二、填空題(每小題3分,共21分)9如圖,在RtACB中,C=90°,BE平分CBA交AC于點E,過E作EDAB于D點,當A= 時,ED恰為AB的中垂線10等腰三角形的周長為20cm,一邊長為6cm,則底邊長為cm11分解因式:2a34a2b+2ab2=12如圖,ACB中,C=90°,BD平分ABC交AC于點D,若AB=12,CD=6,則SABD為13如圖,已知ABC

34、是等邊三角形,點B、C、D、E在同一直線上,且CG=CD,DF=DE,則E=度14如圖,ABC的三條角平分線交于O點,已知ABC的周長為20,ODAB,OD=5,則ABC的面積=15如圖所示一棱長為3cm的正方體,把所有的面均分成3×3個小正方形其邊長都為1cm,假設一只螞蟻每秒爬行2cm,則它從下底面點A沿表面爬行至側面的B點,最少要用秒鐘三、解答題(共75分)16計算題(1)+(2)3x2(2xy3)2(3)a2(a1)+(a5)(a+5)(4)(ab+1)(ab1)2a2b2+1÷(ab)17已知:ab=2015,ab=,求a2bab2的值18先化簡,再求值:(a2b

35、)(a+2b)+ab3÷(ab),其中a=,b=119如圖,某公司舉行開業(yè)一周年慶典時,準備在公司門口長13米、高5米的臺階上鋪設紅地毯已知臺階的寬為4米,請你算一算共需購買多少平方米的紅地毯20問題背景:在ABC中,AB、BC、AC三邊的長分別為、,求這個三角形的面積佳佳同學在解答這道題時,先建立一個正方形網(wǎng)格(每個小正方形的邊長為1),再在網(wǎng)格中畫出格點ABC(即ABC三個頂點都在小正方形的頂點處)如圖所示,這樣不需求ABC的高,而借用網(wǎng)格就能計算出它的面積(1)請你將ABC的面積直接填寫在橫線上;(2)在圖中畫DEF,使DE、EF、DF三邊的長分別為、,并判斷這個三角形的形狀,

36、說明理由21某中學九(1)班同學積極響應“陽光體育工程”的號召,利用課外活動時間積極參加體育鍛煉,每位同學從長跑、籃球、鉛球、立定跳遠中選一項進行訓練,訓練前后都進行了測試現(xiàn)將項目選擇情況及訓練后籃球定時定點投籃測試成績整理后作出如下統(tǒng)計圖表訓練后籃球定時定點投籃測試進球數(shù)統(tǒng)計表進球數(shù)(個)876543人數(shù)214782請你根據(jù)圖表中的信息回答下列問題:(1)訓練后籃球定時定點投籃人均進球數(shù)為;(2)選擇長跑訓練的人數(shù)占全班人數(shù)的百分比是,該班共有同學人;(3)根據(jù)測試資料,訓練后籃球定時定點投籃的人均進球數(shù)比訓練之前人均進球數(shù)增加25%,請求出參加訓練之前的人均進球數(shù)22如圖,已知:ABC中,

37、AB=AC,M是BC的中點,D、E分別是AB、AC邊上的點,且BD=CE求證:MD=ME23如圖,已知ABC中,AB=AC=10cm,BC=8cm,點D為AB的中點如果點P在線段BC上以3cm/s的速度由點B向C點運動,同時,點Q在線段CA上由點C向A點運動(1)若點Q的運動速度與點P的運動速度相等,經過1秒后,BPD與CQP是否全等,請說明理由(2)若點Q的運動速度與點P的運動速度不相等,當點Q的運動速度為多少時,能夠使BPD與CQP全等?參考答案與試題解析一、選擇題(每小題3分,共24分)1下列說法中,正確的是()A(6)2的平方根是6B帶根號的數(shù)都是無理數(shù)C27的立方根是±3D

38、立方根等于1的實數(shù)是1【考點】立方根;平方根;無理數(shù)【分析】根據(jù)平方根及立方根的定義,結合各選項進行判斷即可【解答】解:A、(6)2=36,36的平方根是±6,原說法錯誤,故本選項錯誤;B、帶根號的數(shù)不一定都是無理數(shù),例如是有理數(shù),故本選項錯誤;C、27的立方根是3,故本選項錯誤;D、立方根等于1的實數(shù)是1,說法正確,故本選項正確;故選D2下列運算正確的是()Aa3a2=a6B(a2b)3=a6b3Ca8÷a2=a4Da+a=a2【考點】同底數(shù)冪的除法;合并同類項;同底數(shù)冪的乘法;冪的乘方與積的乘方【分析】根據(jù)同底數(shù)冪的乘法、冪的乘方及同底數(shù)冪的除法法則,分別進行各選項的判

39、斷即可【解答】解:A、a3a2=a5,故本選項錯誤;B、(a2b)3=a6b3,故本選項正確;C、a8÷a2=a6,故本選項錯誤;D、a+a=2a,故本選項錯誤故選B3在ABC中,A,B,C的對邊分別記為a,b,c,下列結論中不正確的是()A如果AB=C,那么ABC是直角三角形B如果a2=b2c2,那么ABC是直角三角形且C=90°C如果A:B:C=1:3:2,那么ABC是直角三角形D如果a2:b2:c2=9:16:25,那么ABC是直角三角形【考點】勾股定理的逆定理【分析】根據(jù)勾股定理的逆定理、三角形內角和定理、直角三角形的判定定理解得即可【解答】解:如果AB=C,那么A

40、BC是直角三角形,A正確;如果a2=b2c2,那么ABC是直角三角形且B=90°,B錯誤;如果A:B:C=1:3:2,設A=x,則B=2x,C=3x,則x+3x+2x=180°,解得,x=30°,則3x=90°,那么ABC是直角三角形,C正確;如果a2:b2:c2=9:16:25,則如果a2+b2=c2,那么ABC是直角三角形,D正確;故選:B4如圖,在數(shù)軸上表示實數(shù)的點可能是()A點PB點QC點MD點N【考點】估算無理數(shù)的大??;實數(shù)與數(shù)軸【分析】先對進行估算,再確定是在哪兩個相鄰的整數(shù)之間,然后確定對應的點即可解決問題【解答】解:3.87,34,對應的

41、點是M故選C5下列結論正確的是()A有兩個銳角相等的兩個直角三角形全等B一條斜邊對應相等的兩個直角三角形全等C頂角和底邊對應相等的兩個等腰三角形全等D兩個等邊三角形全等【考點】全等三角形的判定【分析】熟練運用全等三角形的判定定理解答做題時根據(jù)已知條件,結合全等的判定方法逐一驗證【解答】解:A、有兩個銳角相等的兩個直角三角形,邊不一定相等,有可能是相似形,故選項錯誤;B、一條斜邊對應相等的兩個直角三角形,只有兩個元素對應相等,不能判斷全等,故選項錯誤;C、頂角和底邊對應相等的兩個等腰三角形,確定了頂角及底邊,即兩個等腰三角形確定了,可判定全等,故選項正確;D、兩個等邊三角形,三個角對應相等,但邊

42、長不一定相等,故選項錯誤故選C6三角形的三邊長為a,b,c,且滿足(a+b)2=c2+2ab,則這個三角形是()A等邊三角形B鈍角三角形C直角三角形D銳角三角形【考點】勾股定理的逆定理【分析】對等式進行整理,再判斷其形狀【解答】解:化簡(a+b)2=c2+2ab,得,a2+b2=c2所以三角形是直角三角形,故選:C7如圖,已知點P到AE、AD、BC的距離相等,下列說法:點P在BAC的平分線上;點P在CBE的平分線上;點P在BCD的平分線上;點P在BAC,CBE,BCD的平分線的交點上其中正確的是()ABCD【考點】角平分線的性質【分析】根據(jù)在角的內部到角的兩邊距離相等的點在角的平分線上對各小題

43、分析判斷即可得解【解答】解:點P到AE、AD、BC的距離相等,點P在BAC的平分線上,故正確;點P在CBE的平分線上,故正確;點P在BCD的平分線上,故正確;點P在BAC,CBE,BCD的平分線的交點上,故正確,綜上所述,正確的是故選A8如圖,在ACB中,有一點P在AC上移動,若AB=AC=5,BC=6,則AP+BP+CP的最小值為()A4.8B8C8.8D9.8【考點】軸對稱-最短路線問題【分析】若AP+BP+CP最小,就是說當BP最小時,AP+BP+CP才最小,因為不論點P在AC上的那一點,AP+CP都等于AC那么就需從B向AC作垂線段,交AC于P先設AP=x,再利用勾股定理可得關于x的方

44、程,解即可求x,在RtABP中,利用勾股定理可求BP那么AP+BP+CP的最小值可求【解答】解:從B向AC作垂線段BP,交AC于P,設AP=x,則CP=5x,在RtABP中,BP2=AB2AP2,在RtBCP中,BP2=BC2CP2,AB2AP2=BC2CP2,52x2=62(5x)2解得x=1.4,在RtABP中,BP=4.8,AP+BP+CP=AC+BP=5+4.8=9.8故選D二、填空題(每小題3分,共21分)9如圖,在RtACB中,C=90°,BE平分CBA交AC于點E,過E作EDAB于D點,當A=30° 時,ED恰為AB的中垂線【考點】線段垂直平分線的性質;三角形

45、內角和定理;等腰三角形的性質【分析】求出CBA,求出EBA=A=30°,得出BE=AE,根據(jù)三線合一定理求出BD=AD,即可得出答案【解答】解:當A=30°時,ED恰為AB的中垂線,理由是:BE平分CDA,CBE=DBE,C=90°,A=30°,CBA=60°,EBD=CBE=CBA=30°,即A=EBA,BE=AE,EDAB,BD=AD,即當A=30°時,ED恰為AB的中垂線,故答案30°10等腰三角形的周長為20cm,一邊長為6cm,則底邊長為6或8cm【考點】等腰三角形的性質;三角形三邊關系【分析】分6cm是

46、底邊與腰長兩種情況討論求解【解答】解:6cm是底邊時,腰長=(206)=7cm,此時三角形的三邊分別為7cm、7cm、6cm,能組成三角形,6cm是腰長時,底邊=206×2=8cm,此時三角形的三邊分別為6cm、6cm、8cm,能組成三角形,綜上所述,底邊長為6或8cm故答案為:6或811分解因式:2a34a2b+2ab2=2a(ab)2【考點】提公因式法與公式法的綜合運用【分析】根據(jù)因式分解的方法即可求出答案【解答】解:原式=2a(a22ab+b2)=2a(ab)2故答案為:2a(ab)212如圖,ACB中,C=90°,BD平分ABC交AC于點D,若AB=12,CD=6,

47、則SABD為36【考點】角平分線的性質【分析】過點D作DEAB于點E,根據(jù)角的平分線上的點到角的兩邊的距離相等,得DE=DC=4,再根據(jù)三角形的面積計算公式得出ABD的面積【解答】解:如圖,過點D作DEAB于點E,BD平分ABC,又DEAB,DCBC,DE=DC=4,ABD的面積=ABDE=×12×6=36故答案為:3613如圖,已知ABC是等邊三角形,點B、C、D、E在同一直線上,且CG=CD,DF=DE,則E=15度【考點】等邊三角形的性質;三角形的外角性質;等腰三角形的性質【分析】根據(jù)等邊三角形三個角相等,可知ACB=60°,根據(jù)等腰三角形底角相等即可得出E

48、的度數(shù)【解答】解:ABC是等邊三角形,ACB=60°,ACD=120°,CG=CD,CDG=30°,F(xiàn)DE=150°,DF=DE,E=15°故答案為:1514如圖,ABC的三條角平分線交于O點,已知ABC的周長為20,ODAB,OD=5,則ABC的面積=50【考點】角平分線的性質【分析】作OEBC于E,OFAC于F,如圖,根據(jù)角平分線的性質得到OE=OF=OD=5,然后根據(jù)三角形面積公式和SABC=SOAB+SOBC+SOAC得到SABC=(AB+BC+AC),再把ABC的周長為20代入計算即可【解答】解:作OEBC于E,OFAC于F,如圖,點

49、O是ABC三條角平分線的交點,OE=OF=OD=5,SABC=SOAB+SOBC+SOAC=ODAB+OEBC+OFAC=(AB+BC+AC)=×20=50故答案為:5015如圖所示一棱長為3cm的正方體,把所有的面均分成3×3個小正方形其邊長都為1cm,假設一只螞蟻每秒爬行2cm,則它從下底面點A沿表面爬行至側面的B點,最少要用2.5秒鐘【考點】平面展開-最短路徑問題【分析】把此正方體的點A所在的面展開,然后在平面內,利用勾股定理求點A和B點間的線段長,即可得到螞蟻爬行的最短距離在直角三角形中,一條直角邊長等于5,另一條直角邊長等于2,利用勾股定理可求得【解答】解:因為爬

50、行路徑不唯一,故分情況分別計算,進行大、小比較,再從各個路線中確定最短的路線(1)展開前面右面由勾股定理得AB=cm;(2)展開底面右面由勾股定理得AB=5cm;所以最短路徑長為5cm,用時最少:5÷2=2.5秒三、解答題(共75分)16計算題(1)+(2)3x2(2xy3)2(3)a2(a1)+(a5)(a+5)(4)(ab+1)(ab1)2a2b2+1÷(ab)【考點】實數(shù)的運算;整式的混合運算【分析】(1)原式利用平方根及立方根定義計算即可得到結果;(2)原式利用冪的乘方與積的乘方運算法則計算,再利用單項式乘以單項式法則計算即可得到結果;(3)原式利用單項式乘以多項式

51、,以及平方差公式化簡,去括號合并即可得到結果;(4)原式中括號中利用平方差公式化簡,合并后利用單項式乘以單項式法則計算即可得到結果【解答】解:(1)原式=0.5+=0.51.5=1; (2)原式=3x24x2y6=12x4y6; (3)原式=a3a2+a225=a325; (4)原式=(a2b212a2b2+1)÷(ab)=(a2b2)÷(ab)=ab17已知:ab=2015,ab=,求a2bab2的值【考點】因式分解-提公因式法【分析】首先把代數(shù)式因式分解,再進一步代入求得數(shù)值即可【解答】解:a2bab2=ab(ab),ab(ab)=(2015)×()=201618先化簡,再求值:(a2b)(a+2b)+ab3÷(ab),其中a=,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論