2011年高考數(shù)學總復習 提能拔高限時訓練:絕對值不等式與一元二次不等式(練習+詳細答案)大綱人教版_第1頁
2011年高考數(shù)學總復習 提能拔高限時訓練:絕對值不等式與一元二次不等式(練習+詳細答案)大綱人教版_第2頁
2011年高考數(shù)學總復習 提能拔高限時訓練:絕對值不等式與一元二次不等式(練習+詳細答案)大綱人教版_第3頁
2011年高考數(shù)學總復習 提能拔高限時訓練:絕對值不等式與一元二次不等式(練習+詳細答案)大綱人教版_第4頁
2011年高考數(shù)學總復習 提能拔高限時訓練:絕對值不等式與一元二次不等式(練習+詳細答案)大綱人教版_第5頁
全文預覽已結束

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

1、提能拔高限時訓練2 絕對值不等式與一元二次不等式一、選擇題1.設集合Ax|x-2|2,xR,By|y-x2,-1x2,則(AB)等于( )A.R B.x|xR,x0 C.0 D.解析:A0,4,B-4,0,所以(AB)0,故選B.答案:B2.已知集合Ax|x2-5x+60,集合Bx|2x-1|3,則集合AB等于( )A.x|2x3 B.x|2x3 C.x|2x3 D.x|-1x3解析:Ax|2x3,Bx|x2或x-1,ABx|2x3.答案:C3.已知集合Mx|0,Ny|y3x2+1,xR,則MN等于( )A. B.x|x1 C.x|x1 D.x|x1或x0解析:Mx|x1或x0,Ny|y1,M

2、Nx|x1.答案:C4.不等式|x|·(1-2x)0的解集是( )A.(-,) B.(-,0)(0,) C.(,+) D.(0, )解析:|x|0(x0),故原不等式等價于x且x0.答案:B5.不等式的解集為( )A.(1,+) B.0,1)(1,+) C.0,+) D.(-1,0(1,+)解析:原不等式變形為,即,即x(x2-1)0,且x±1,故-1x0或x1.答案:D6.已知集合Ax|x2-x-20,Bx|x-a|1,若AB,則實數(shù)a的取值范圍是( )A.(0,1) B.(-,1) C.(0,) D.0,1解析:Ax|x2或x-1,Bx|a-1xa+1.又AB,0a1.

3、答案:D7.若不等式ax2+bx+20的解集是(,),則a+b的值為( )A.10 B.-10 C.14 D.-14解析:由已知得a0,且,是方程ax2+bx+20的兩個根,由韋達定理得a+b-14.答案:D8.不等式組的解集是( )A.x|0x B.x|0x2.5 C.x|0x2 D.x|0x3解析:當0x2時,不等式化為,即x0,0x2.當x2時,不等式化為,即x26,2x.綜合,可知0x.故選A.答案:A9.若xR,則(1-|x|)(1+x)0的充要條件是( )A.|x|1 B.x-1 C.|x|1 D.x-1或-1x1解析:原不等式化為或即或解得-1x1或x-1.故選D.答案:D10.

4、不等式1|x+1|3的解集為( )A.(0,2) B.(-2,0)(2,4) C.(-4,0) D.(-4,-2)(0,2)解析:由1|x+1|3得1x+13或-3x+1-1,即0x2或-4x-2.故選D.答案:D二、填空題11.不等式的解集為_.解析:原不等式可化為(2x+1)|x|0(x0).當x0時,(2x+1)x0解得x或x0,所以x0.當x0時,(2x+1)x0解得x0,最后求并集,得x|x且x0.答案:x|x且x012.不等式x2-ax-b0的解集是x|2x3,則不等式bx2-ax-10的解集為_.解析:依題意可知,2,3是方程x2-ax-b0的兩根,a2+35,-b2×

5、36,即b-6.故bx2-ax-10為-6x2-5x-10.x.答案:x|x13.不等式的解集是x|x1或x2,則實數(shù)m_.解析:,即.(m-1)·2+10,.答案:14.若不等式|x-4|+|3-x|a的解集是空集,則實數(shù)a的取值范圍是_.解析:|x-4|+|3-x|1,要使|x-4|+|3-x|a的解集為空集,則a1.答案:a1三、解答題15.(2009屆江蘇南京二模)已知不等式ax2-3x+64的解集為x|x1或xb,(1)求a,b;(2)解不等式ax2-(ac+b)x+bc0.解:(1)因為不等式ax2-3x+64的解集為x|x1或xb,所以x11與x2b是方程ax2-3x+

6、20的兩個實數(shù)根,且b1.由根與系數(shù)的關系,得解得所以(2)由(1)知不等式ax2-(ac+b)x+bc0,即x2-(2+c)x+2c0,得(x-2)(x-c)0.當c2時,不等式(x-2)(x-c)0的解集為x|2xc;當c2時,不等式(x-2)(x-c)0的解集為x|cx2;當c2時,不等式(x-2)(x-c)0的解集為.所以當c2時,不等式ax2-(ac+b)x+bc0的解集為x|2xc;當c2時,不等式ax2-(ac+b)x+bc0的解集為x|cx2;當c2時,不等式ax2-(ac+b)x+bc0的解集為.16.對任意實數(shù)x,不等式|x+1|-|x-2|k恒成立,求k的取值范圍.解:方

7、法一:數(shù)形結合,根據絕對值的幾何意義.|x+1|可以看作點x到點-1的距離,|x-2|可以看作是點x到點2的距離.我們在數(shù)軸上任取三個點xA-1,-1xB2,xC2,如下圖:可以看出|xA+1|-|xB-2|-3,-3|xB+1|-|xB-2|3,|xC+1|-|xC-2|3,由此可知,對任意實數(shù)x,都有-3|x+1|-|x-2|3.因此,對任意實數(shù)x,|x+1|-|x-2|k恒成立,則k-3.方法二:令y|x+1|-|x-2|,在直角坐標系中作出其圖象如右圖.要使|x+1|-|x-2|k,從圖象上可以看出,只要k-3即可.方法三:根據定理“|a|-|b|a-b|”,得|x+1|-|x-2|(x+1)-(x-2)|3,-3|x+1|-|x-2|3.對任意xR,|x+1|-|x-2|k恒成立,k-3.教學參考例題 志鴻優(yōu)化系列叢書【例1】 設不等式x2-2ax+a+20的解集為M,如果M1,4,則實數(shù)a_.解析:設f(x)x2-2ax+a+2,(-2a)2-4(a+2)4(a2-a-2).(1)當0,即-1a2時,M1,4;(2)當0,即a-1或2時,a-1時,M-11,4;a2時,M21,4;(3)當0,即a-1或a2時,設Mx1,x2,則M1,41x1x24解得2a.綜上所述,M

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論