![初中數(shù)學(xué)概念教學(xué)舉例_第1頁(yè)](http://file3.renrendoc.com/fileroot_temp3/2021-12/10/4cce218b-b9fd-4db6-a180-669f3d366b97/4cce218b-b9fd-4db6-a180-669f3d366b971.gif)
![初中數(shù)學(xué)概念教學(xué)舉例_第2頁(yè)](http://file3.renrendoc.com/fileroot_temp3/2021-12/10/4cce218b-b9fd-4db6-a180-669f3d366b97/4cce218b-b9fd-4db6-a180-669f3d366b972.gif)
![初中數(shù)學(xué)概念教學(xué)舉例_第3頁(yè)](http://file3.renrendoc.com/fileroot_temp3/2021-12/10/4cce218b-b9fd-4db6-a180-669f3d366b97/4cce218b-b9fd-4db6-a180-669f3d366b973.gif)
![初中數(shù)學(xué)概念教學(xué)舉例_第4頁(yè)](http://file3.renrendoc.com/fileroot_temp3/2021-12/10/4cce218b-b9fd-4db6-a180-669f3d366b97/4cce218b-b9fd-4db6-a180-669f3d366b974.gif)
![初中數(shù)學(xué)概念教學(xué)舉例_第5頁(yè)](http://file3.renrendoc.com/fileroot_temp3/2021-12/10/4cce218b-b9fd-4db6-a180-669f3d366b97/4cce218b-b9fd-4db6-a180-669f3d366b975.gif)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、 初中數(shù)學(xué)概念教學(xué)的探討 數(shù)學(xué)概念是數(shù)學(xué)教學(xué)的重點(diǎn)內(nèi)容,也是學(xué)生必須掌握的重要基礎(chǔ)知識(shí)之一,是數(shù)學(xué)基本技能的形成與提高的必要條件。在概念教學(xué)中,教師要要講究教學(xué)方法,注重概念的形成過程,多啟發(fā)學(xué)生的主動(dòng)性與創(chuàng)造性;同時(shí)要求學(xué)生理解概念的根本內(nèi)涵,弄清概念之間的區(qū)別與聯(lián)系,記憶概念注意關(guān)鍵詞語(yǔ)和分析概念。 概念是客觀事物本質(zhì)屬性(本質(zhì)特征)在人們頭腦中的反映。數(shù)學(xué)概念是反映現(xiàn)實(shí)世界的空間形式和數(shù)量關(guān)系的本質(zhì)屬性的思維形式。在初中數(shù)學(xué)教學(xué)中,加強(qiáng)概念課的教學(xué),正確理解數(shù)學(xué)概念是掌握數(shù)學(xué)基礎(chǔ)知識(shí)的前提,是學(xué)好定理、公式、法則和數(shù)學(xué)思想的基礎(chǔ),搞清概念是提高解題能力的關(guān)鍵。只有對(duì)概念理解得深透,才能在
2、解題中作出正確的判斷。因此在數(shù)學(xué)教學(xué)過程中,數(shù)學(xué)概念的教學(xué)尤為重要。 學(xué)生數(shù)學(xué)能力的發(fā)展取決于他對(duì)數(shù)學(xué)概念的牢固掌握與深刻理解與否。而在現(xiàn)實(shí)中,許多學(xué)生對(duì)數(shù)學(xué)的學(xué)習(xí),只注重盲目的做習(xí)題,不重視數(shù)學(xué)概念的掌握,對(duì)基本概念含糊不清。做習(xí)題不懂得從基本概念入手,思考解題依據(jù),探索解題方法。這樣的學(xué)習(xí),必然越學(xué)越糊涂。因而筆者認(rèn)為數(shù)學(xué)概念的教學(xué)在整個(gè)數(shù)學(xué)教學(xué)中有其不可替代的作用與地位。 下面就教與學(xué)兩個(gè)方面談?wù)勎夷w淺的認(rèn)識(shí):一、在概念教學(xué)中,要講究教學(xué)方法。 1. 概念的引入:通過多途徑引入概念 數(shù)學(xué)概念有些是由生產(chǎn)、生活實(shí)際問題中抽象出來的,有些是由數(shù)學(xué)自身的發(fā)展與需要而產(chǎn)生的,許多數(shù)學(xué)概念源于生活
3、實(shí)際,但又依賴已有的數(shù)學(xué)概念而產(chǎn)生。根據(jù)數(shù)學(xué)概念產(chǎn)生的方式及數(shù)學(xué)思維的一般方法,結(jié)合學(xué)生的認(rèn)知特點(diǎn),可以通過創(chuàng)設(shè)數(shù)學(xué)概念形成的問題情景,采用猜想、歸納的方法來引入。引入是概念教學(xué)的第一步,也是形成概念的基礎(chǔ)。概念引入時(shí)教師要鼓勵(lì)學(xué)生猜想,即讓學(xué)生依據(jù)已有的材料和知識(shí)作出符合一定經(jīng)驗(yàn)與事實(shí)的推測(cè)性想象,讓學(xué)生經(jīng)歷數(shù)學(xué)家發(fā)現(xiàn)新概念的最初階段。猜想作為數(shù)學(xué)想象表現(xiàn)形式的最高層次,屬于創(chuàng)造性想象,是推動(dòng)數(shù)學(xué)發(fā)展的強(qiáng)大動(dòng)力,因此,在概念引入時(shí)培養(yǎng)學(xué)生敢于猜想的習(xí)慣,是形成數(shù)學(xué)直覺,發(fā)展數(shù)學(xué)思維,獲得數(shù)學(xué)發(fā)現(xiàn)的基本素質(zhì),也是培養(yǎng)創(chuàng)造性思維的重要因素。 概念的引入是在教師的引導(dǎo)下,師生共同觀察一類事物的實(shí)例
4、,并通過猜想、判斷并概括出它們的特征,形成某個(gè)概念的過程。例如圓的概念的引出前,可讓同學(xué)們聯(lián)想生活中見過的年輪、太陽(yáng)、五環(huán)旗、圓狀跑道等實(shí)物的形狀,再讓同學(xué)用圓規(guī)在紙上畫圓,也可用準(zhǔn)備好的定長(zhǎng)的線繩,將一端固定,而另一端帶有鉛筆并繞固定端旋轉(zhuǎn)一周,從而引導(dǎo)同學(xué)們自己發(fā)現(xiàn)圓的形成過程,進(jìn)而總結(jié)出圓的特點(diǎn):圓周上任意一點(diǎn)到圓心的距離相等,從而猜想歸納出圓的概念。 引入概念時(shí),教師要很好的體現(xiàn)主導(dǎo)作用,要注意引好路,注意培養(yǎng)學(xué)生的觀察事物及數(shù)學(xué)歸納推理的嚴(yán)密性。第一:選擇實(shí)例應(yīng)注意代表性。;在引入平行四邊形這一概念時(shí),可以列舉一些生活中常見的平行四邊形物體,如:汽車防護(hù)鏈、門框、國(guó)旗等。除了畫一般的
5、平行四邊形外,還要畫矩形、菱形、正方形。一可說明這類圖形的特點(diǎn)是兩組對(duì)邊分別平行,與夾角的大小、邊的長(zhǎng)短變化無關(guān);二可使學(xué)生直觀地認(rèn)識(shí)到矩形、菱形、正方形均是平行四邊形的特例,為學(xué)生后面學(xué)習(xí)埋下伏筆。第二:概括特點(diǎn)要注意準(zhǔn)確性。例如在講正比例函數(shù)的表達(dá)式時(shí),只能歸納為y=kx (k0),而不能歸納為 (k0),因?yàn)檫@樣正比例函數(shù)的自變量的取值范圍縮小了。第三:引進(jìn)概念要突出必要性。引入概念的必要性可以從實(shí)際應(yīng)用與數(shù)學(xué)本身的需要兩方面進(jìn)行分析。 2、概念的形成:讓學(xué)生體驗(yàn)概念的形成要改變傳統(tǒng)教學(xué)中結(jié)論及結(jié)論的運(yùn)用的教學(xué)方法,要注意概念的形成過程,讓學(xué)生體驗(yàn)概念的形成過程,即概念在什么條件下蘊(yùn)藏著
6、,在什么背景下初露端倪,如何經(jīng)過分析、對(duì)比、歸納、抽象,最后形成理性的概念。這個(gè)過程,如果處理得當(dāng),對(duì)發(fā)展學(xué)生的數(shù)學(xué)思維很有利。 幾何概念是進(jìn)行判斷、推理和建立定理的依據(jù),也是思維的起點(diǎn),應(yīng)當(dāng)向?qū)W生揭示概念間的相互聯(lián)系及其本質(zhì)屬性。因此在幾何教學(xué)中,不僅應(yīng)注意概念與圖形的結(jié)合,更要重視引導(dǎo)學(xué)生觀察、發(fā)現(xiàn)、探索并概括出概念的形成過程。例如在四邊形一章的四邊形定義教學(xué)中,若只停留在對(duì)四邊形定義的文字表述上是浮淺的,應(yīng)當(dāng)加深對(duì)四邊形圖形的認(rèn)識(shí)。因?yàn)樗倪呅蔚母拍畹慕虒W(xué)是聯(lián)系三角形一章與四邊形一章的紐帶。教學(xué)時(shí)要切實(shí)注意啟發(fā)學(xué)生觀察圖形,探索四邊形的組成,由學(xué)生概括: 1)四邊形可以看著是由兩個(gè)具有公共
7、邊的任意三角形組成的。 2)四邊形也可以看作是一個(gè)大三角形任意截取一個(gè)小三角形后的剩余部分。通過上面的認(rèn)識(shí),學(xué)生很自然的從三角形的概念過渡到四邊形的學(xué)習(xí)上了。至于給四邊形下定義就輕而易舉的可以完成了,對(duì)認(rèn)識(shí)四邊形的邊、對(duì)角線、頂點(diǎn)、內(nèi)角都是順理成章的事。同時(shí)我們就不必再為后面幫助學(xué)生理解“把四邊形的有關(guān)問題轉(zhuǎn)化為三角形的問題來解決”的原因而多費(fèi)口舌了。 3、概念的運(yùn)用多啟發(fā)學(xué)生的主動(dòng)性與創(chuàng)造性。概念的形成是一個(gè)由個(gè)別到一般的過程,而概念的運(yùn)用則是一個(gè)由一般到個(gè)別的過程,它們是學(xué)生掌握概念的兩個(gè)階段。通過運(yùn)用概念解決實(shí)際問題,可以加深、豐富和鞏固學(xué)生對(duì)數(shù)學(xué)概念的掌握,并且在概念運(yùn)用過程中也有利于
8、培養(yǎng)學(xué)生思維的深刻性、靈活性、敏捷性、批判性和獨(dú)創(chuàng)性等等,同時(shí)也有利于培養(yǎng)學(xué)生的實(shí)踐能力。啟發(fā)學(xué)生主動(dòng)性與創(chuàng)造性的關(guān)鍵在于“創(chuàng)設(shè)問題的情景”,即要?jiǎng)?chuàng)設(shè)一種使學(xué)生能積極思維的環(huán)境,使學(xué)生處于躍躍欲試的起跳點(diǎn)上;在于“給學(xué)生表達(dá)、交流的機(jī)會(huì)”;在于“教學(xué)處置的發(fā)散性”;還在于“不要撲滅學(xué)生思維的火花”。有時(shí)學(xué)生對(duì)概念的歸納總結(jié)表現(xiàn)出不十分完備,此時(shí)教師要善于區(qū)分胡思亂想和直覺猜測(cè),應(yīng)該鼓勵(lì),因?yàn)閯?chuàng)造性成果往往就來源于直覺思維。 1).運(yùn)用概念的方法 (1)復(fù)述概念或根據(jù)概念填空。 (2)運(yùn)用概念進(jìn)行判斷。 (3)運(yùn)用概念進(jìn)行推理 2).運(yùn)用概念的教學(xué)中應(yīng)注意的問題教學(xué)中主要是通過練習(xí)達(dá)到運(yùn)用概念的
9、目的的。練習(xí)是使學(xué)生掌握基礎(chǔ)知識(shí)和技能,培養(yǎng)和發(fā)展學(xué)生思維能力的重要手段。練習(xí)時(shí)需要注意以下幾點(diǎn): (1)練習(xí)的目的要明確。在練習(xí)時(shí)必須明確每項(xiàng)練習(xí)的目的,使每項(xiàng)練習(xí)都突出重點(diǎn),充分體現(xiàn)練習(xí)的意圖,做到有的放矢,使練習(xí)真正有助于學(xué)生理解新學(xué)概念,有利于發(fā)展學(xué)生的思維。如為了幫助學(xué)生鞏固新學(xué)概念和形成基本技能,可以設(shè)計(jì)針對(duì)性練習(xí);為了幫助學(xué)生克服定式的干擾,進(jìn)一步明確概念的內(nèi)涵和外延,可以設(shè)計(jì)變式練習(xí);為了幫助學(xué)生分清容易混淆的概念,可以設(shè)計(jì)對(duì)比練習(xí);為了幫助學(xué)生擴(kuò)展知識(shí)的應(yīng)用范圍,加深學(xué)生對(duì)新學(xué)概念的理解,培養(yǎng)學(xué)生的創(chuàng)造性思維,可以設(shè)計(jì)開放性練習(xí);為了幫助學(xué)生溝通新學(xué)概念與其他知識(shí)的橫向、縱向
10、聯(lián)系,促進(jìn)概念系統(tǒng)的形成,培養(yǎng)學(xué)生綜合運(yùn)用知識(shí)的能力,可以設(shè)計(jì)綜合性練習(xí)等。 (2)練習(xí)的層次要清楚。鑒于初中生的年齡特點(diǎn),認(rèn)識(shí)事物往往不能一次完成,需要一個(gè)逐步深化和提高的過程。因此練習(xí)時(shí)要按照由簡(jiǎn)到繁、由易到難、由淺入深的原則,逐步加深練習(xí)的難度。 基本練習(xí),在剛學(xué)完新課之后的單項(xiàng)的、帶有模仿性的練習(xí),它可以幫助學(xué)生鞏固知識(shí),形成正確的認(rèn)知結(jié)構(gòu)。 發(fā)展練習(xí),在學(xué)生已基本掌握了概念和初步形成一定的技能之后的練習(xí),它可以幫助學(xué)生形成熟練的技能技巧。 綜合練習(xí),可以使學(xué)生進(jìn)一步深化概念,提高解題的靈活性,培養(yǎng)學(xué)生的數(shù)學(xué)思維能力,實(shí)現(xiàn)由技能到能力的轉(zhuǎn)化。 (3)要注意引導(dǎo)學(xué)生形成概念系統(tǒng)。數(shù)學(xué)是一
11、門結(jié)構(gòu)性很強(qiáng)的學(xué)科,任何一個(gè)數(shù)學(xué)概念都存在于一定的系統(tǒng)之中,并與其它有關(guān)概念有著區(qū)別與聯(lián)系。因此在進(jìn)行運(yùn)用概念的教學(xué)時(shí),要注意引導(dǎo)學(xué)生將所獲得的每一新概念及時(shí)地納入相應(yīng)的概念系統(tǒng),這樣新舊概念才能融會(huì)貫通,才能真正透徹地理解新概念,才能使相關(guān)聯(lián)的概念形成概念系統(tǒng)。這樣做也有利于學(xué)生所獲得的概念的保持與運(yùn)用,有利于學(xué)生概念系統(tǒng)的形成,有利于學(xué)生認(rèn)知系統(tǒng)結(jié)構(gòu)的形成。如在學(xué)過菱形面積計(jì)算公式后,可以通過練習(xí),聯(lián)系正方體是特殊的菱形,通過類比,可以發(fā)現(xiàn)正方形的面積計(jì)算公式可概括為“對(duì)角線的平方的一半”。這樣就溝通了知識(shí)間的內(nèi)在聯(lián)系,鞏固了這一類概念的系統(tǒng)知識(shí)。 二、在基本概念教學(xué)中,應(yīng)培養(yǎng)學(xué)生做到“五
12、會(huì)”即:會(huì)理解、會(huì)記識(shí)、會(huì)表達(dá)、會(huì)比較、會(huì)舉例。 1、會(huì)理解理解概念要透徹要記住數(shù)學(xué)概念,首先要理解透徹,不能囫圇吞棗,要求在講概念時(shí)講清、講透。對(duì)課本上的精練的概念應(yīng)該字斟句酌,幫助他們徹底認(rèn)清關(guān)鍵性的字眼,逐字逐句理解透徹,力求真正弄懂。 例如:“含有兩個(gè)未知數(shù),并且未知數(shù)項(xiàng)的次數(shù)是1的方程叫二元一次方程”。對(duì)這個(gè)定義,除了講清楚“元”與“次”的含義外,還要抓住“項(xiàng)”這個(gè)字眼做文章,使學(xué)生懂得這個(gè)定義如果丟了“項(xiàng)”字,則方程xy5也是二元一次方程。 2、會(huì)記識(shí)記識(shí)概念要深刻數(shù)學(xué)概念不僅僅要理解,還要對(duì)重要的概念、定理、定義、數(shù)學(xué)思想方法進(jìn)行必要的識(shí)記。識(shí)記應(yīng)當(dāng)在理解的基礎(chǔ)上進(jìn)行,通過理解來
13、幫助記憶,通過記憶來加深理解。教學(xué)中教師要指導(dǎo)學(xué)生記憶: 利用順口溜幫助記憶。如:講全等三角形的判定定理時(shí),我編了:“要全等,三條件,至少要有一條邊;如果具有二條邊,夾角必須在中間”。糾正了學(xué)生在證三角形全等時(shí)常犯的“邊邊角”推全等的錯(cuò)誤。數(shù)形結(jié)合法幫助記憶。如:講實(shí)數(shù)的絕對(duì)值時(shí),既講其代數(shù)定義,又講其幾何定義“數(shù)軸上表示一個(gè)數(shù)的點(diǎn),它到原點(diǎn)的距離叫做這個(gè)數(shù)的絕對(duì)值”,讓學(xué)生看著數(shù)軸上的圖示記憶這一概念。特別是對(duì)于 “三角函數(shù)”中的概念、公式,更要充分利用圖形幫助學(xué)生記憶。如講基本函數(shù)時(shí);利用函數(shù)的圖象幫助學(xué)生記憶其性質(zhì)等等。不理解的記憶是機(jī)械記憶,是鸚鵡學(xué)舌,當(dāng)然無用,只會(huì)加重學(xué)生的負(fù)擔(dān);但
14、是沒有記憶去談理解掌握,肯定是空話一句,也是不行的。課前預(yù)習(xí)與課后復(fù)習(xí)要安排時(shí)間讓學(xué)生熟悉鞏固有關(guān)的基本概念、定理、定義,必要時(shí)要檢查,還要結(jié)合新課復(fù)習(xí)講解讓學(xué)生有一個(gè)循環(huán)的記憶過程。在例題講解中,盡可能聯(lián)系學(xué)生已往學(xué)過的概念。在學(xué)生稍有遺忘的時(shí)候,又刺激記憶,不斷加深印象,使學(xué)生真正記住,在需要時(shí)能立刻浮現(xiàn)腦際,脫口而出。 3、會(huì)表述表述概念要準(zhǔn)確 概念形成之后,應(yīng)及時(shí)讓學(xué)生用語(yǔ)言表述出來,以加深對(duì)概念的印象,促進(jìn)內(nèi)化。語(yǔ)言作為思維的物質(zhì)載體,教師可從學(xué)生的表述中得到反饋信息,了解、評(píng)價(jià)學(xué)生的思維結(jié)果。表述概念可以要求學(xué)生用自己的語(yǔ)言敘述,可以不按課本原文,按一個(gè)角度表達(dá)。例如:“
15、如果兩個(gè)方程的解相同,那么這兩個(gè)方程叫做同解方程”??梢院?jiǎn)述為“有相同的解的方程叫同解方程”。由于數(shù)學(xué)概念是用科學(xué)的、精練的數(shù)學(xué)語(yǔ)言概括表達(dá)出來的,它所揭示事物的本質(zhì)屬性必須確定、無矛盾,有根有據(jù)和合情合理。因此培養(yǎng)學(xué)生正確的表述概念,能促進(jìn)學(xué)生思維的深刻性。 如概括分式的基本性質(zhì)時(shí),學(xué)生常常會(huì)概述為:“分式的分子與分母同時(shí)乘以(或除以)同一個(gè)整式,分式的值不變。”總是忽略整式不等于零則一關(guān)鍵性的規(guī)定,類似的“比例的基本性質(zhì)”、“分母有理化”都要防止丟了“零除外”這個(gè)條件。又如認(rèn)識(shí)梯形時(shí),教師從直觀的模型或水壩橫截面的形狀引入,抽象出圖形,然后讓學(xué)生對(duì)大小、形狀、位置不同的梯形進(jìn)行觀察、比較、
16、分析,找出它們的共有本質(zhì)屬性,發(fā)現(xiàn)用“只有”就可以說明梯形的另一組對(duì)邊是不平行的。最后用準(zhǔn)確簡(jiǎn)練的語(yǔ)言表達(dá)為“只有一組對(duì)邊平行的四邊形叫做梯形”。這樣學(xué)生在給概念下定義時(shí)就會(huì)斟字酌句,不隨意添字丟字。通過對(duì)重點(diǎn)字詞的剖析,體會(huì)數(shù)學(xué)語(yǔ)言的嚴(yán)謹(jǐn)。學(xué)生在組織語(yǔ)言給概念下定義的過程中,既培養(yǎng)了語(yǔ)言表達(dá)能力,也鍛煉了思維能力。 4、會(huì)比較比較概念要鑒別 有比較才有鑒別。許多數(shù)學(xué)概念相互之間聯(lián)系密切,講新概念時(shí),要聯(lián)系已講的概念,比較它們之間的異同點(diǎn)。例如一元一次不等式與一元一次方程,在“一元”與“一次”上是相同的,不同的是前者含不等號(hào),后者含等號(hào)。對(duì)于易混淆的概念的最主要區(qū)別要特別強(qiáng)調(diào)。例如多項(xiàng)式與單項(xiàng)
17、式的區(qū)別,主要是含不含加減運(yùn)算;整式乘法與因式分解的區(qū)別,主要是積化和差或和差化積。 5、會(huì)舉例運(yùn)用概念要靈活 在提問數(shù)學(xué)概念時(shí),有的學(xué)生會(huì)按課本內(nèi)容回答得一字不差,但是要他舉個(gè)例子,想了半天卻舉不出來或舉錯(cuò)例子,更談不上靈活應(yīng)用了,這說明學(xué)生不是真懂。 先看這樣一個(gè)例子:學(xué)習(xí)了“三角形的內(nèi)切圓”后,讓學(xué)生試著解決這個(gè)問題:“工人師傅要將一塊三角形鐵片加工成一個(gè)圓形零件。請(qǐng)你幫他設(shè)計(jì):如何才能制作最大面積的零件?”學(xué)生分析題意后,發(fā)現(xiàn)了此題的實(shí)質(zhì):要從三角形余料中剪出個(gè)與三角形三邊都相切的內(nèi)切圓。再讓學(xué)生畫圖驗(yàn)證。由于把枯燥的概念同學(xué)生的生活實(shí)際結(jié)合起來,對(duì)概念的理解就更
18、透徹了,還認(rèn)識(shí)到了數(shù)學(xué)的價(jià)值,獲得了運(yùn)用知識(shí)的能力。 培養(yǎng)學(xué)生的實(shí)踐能力對(duì)于提高學(xué)生的創(chuàng)造力起著至關(guān)重要的作用。只有積極參與實(shí)踐,才能發(fā)現(xiàn)新問題,提出新見解、新思想、新方法,才能把握創(chuàng)造的機(jī)會(huì)進(jìn)行成功的創(chuàng)造,提高創(chuàng)新能力。讓學(xué)生用學(xué)到的數(shù)學(xué)概念解決日常生活中的實(shí)際問題,是概念教學(xué)中培養(yǎng)學(xué)生的創(chuàng)造性思維的有力手段。 概念的形成是一個(gè)由個(gè)別到一般的過程,而概念的運(yùn)用是一個(gè)由一般到個(gè)別的過程,它們是學(xué)生掌握概念兩個(gè)階段。通過運(yùn)用概念解決實(shí)際問題,可以加深、豐富和鞏固學(xué)生對(duì)數(shù)學(xué)概念的掌握,并且在概念的運(yùn)用過程中培養(yǎng)學(xué)生的實(shí)踐能力。綜上所述,概念教學(xué)至關(guān)重要,概念教學(xué)的模式多種多樣,數(shù)學(xué)概念教學(xué)的最終目的不僅僅是使學(xué)生掌握概念本身,而應(yīng)努力通過揭示概念的形成、發(fā)展和應(yīng)用的過程,培養(yǎng)學(xué)生的辯證唯物主義觀念,完善學(xué)生的認(rèn)知結(jié)構(gòu),發(fā)展學(xué)生的思維能力。若在課堂教學(xué)中只要求學(xué)生記住它的定義,然后反復(fù)練習(xí),這樣做,雖然學(xué)生也能理解這部分知識(shí),但實(shí)際上是降低了對(duì)能力的要求。所以在教學(xué)過程中還應(yīng)特別注意對(duì)例題和教學(xué)方法等方面的選擇和改進(jìn)。例如:應(yīng)盡可能地使用"啟研
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 人教版地理八年級(jí)下冊(cè)8.1《自然特征與農(nóng)業(yè)》聽課評(píng)課記錄1
- 湘教版數(shù)學(xué)八年級(jí)上冊(cè)2.5《全等三角形及其性質(zhì)》聽評(píng)課記錄1
- 人教版數(shù)學(xué)九年級(jí)上冊(cè)聽評(píng)課記錄21.2.3《因式分解法》
- 生產(chǎn)設(shè)備技術(shù)轉(zhuǎn)讓協(xié)議書(2篇)
- 環(huán)保保潔服務(wù)協(xié)議書(2篇)
- 蘇科版數(shù)學(xué)七年級(jí)下冊(cè)12.3《互逆命題》聽評(píng)課記錄1
- 部編版八年級(jí)道德與法治下冊(cè)第四課《公民義務(wù)》第1課時(shí)《公民基本義務(wù)》聽課評(píng)課記錄
- 【部編人教版】八年級(jí)上冊(cè)歷史聽課評(píng)課記錄 第18課 從九一八事變到西安事變
- 浙教版數(shù)學(xué)七年級(jí)下冊(cè)1.3《平行線的判定》聽評(píng)課記錄2
- 2025年超低頻傳感器標(biāo)定系統(tǒng)合作協(xié)議書
- 北京市海淀區(qū)2024-2025學(xué)年八年級(jí)上學(xué)期期末考試數(shù)學(xué)試卷(含答案)
- 23G409先張法預(yù)應(yīng)力混凝土管樁
- 煤礦機(jī)電運(yùn)輸培訓(xùn)課件
- “德能勤績(jī)廉”考核測(cè)評(píng)表
- 三年級(jí)下冊(cè)口算天天100題(A4打印版)
- 鍋爐房危害告知卡
- 江西省農(nóng)村信用社(農(nóng)商銀行)
- 陳子性藏書卷七
- NPI流程管理分解
- 物業(yè)公司財(cái)務(wù)部各崗位工作職責(zé)
- 政務(wù)信息培訓(xùn)ppt課件
評(píng)論
0/150
提交評(píng)論