![Diracδ函數(shù)及其性質(zhì)_第1頁(yè)](http://file2.renrendoc.com/fileroot_temp3/2021-11/21/c271b039-2090-4e58-a8bd-450e5c4267e7/c271b039-2090-4e58-a8bd-450e5c4267e71.gif)
![Diracδ函數(shù)及其性質(zhì)_第2頁(yè)](http://file2.renrendoc.com/fileroot_temp3/2021-11/21/c271b039-2090-4e58-a8bd-450e5c4267e7/c271b039-2090-4e58-a8bd-450e5c4267e72.gif)
![Diracδ函數(shù)及其性質(zhì)_第3頁(yè)](http://file2.renrendoc.com/fileroot_temp3/2021-11/21/c271b039-2090-4e58-a8bd-450e5c4267e7/c271b039-2090-4e58-a8bd-450e5c4267e73.gif)
![Diracδ函數(shù)及其性質(zhì)_第4頁(yè)](http://file2.renrendoc.com/fileroot_temp3/2021-11/21/c271b039-2090-4e58-a8bd-450e5c4267e7/c271b039-2090-4e58-a8bd-450e5c4267e74.gif)
![Diracδ函數(shù)及其性質(zhì)_第5頁(yè)](http://file2.renrendoc.com/fileroot_temp3/2021-11/21/c271b039-2090-4e58-a8bd-450e5c4267e7/c271b039-2090-4e58-a8bd-450e5c4267e75.gif)
版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、一、 Dirac 函數(shù)函數(shù) v1Dirac函數(shù)的定義函數(shù)的定義 v2Dirac函數(shù)可以用一些連續(xù)函數(shù)的函數(shù)可以用一些連續(xù)函數(shù)的序列極限來(lái)表示序列極限來(lái)表示 v3Dirac 函數(shù)的性質(zhì)函數(shù)的性質(zhì) v4復(fù)合函數(shù)形式的復(fù)合函數(shù)形式的Dirac函數(shù)函數(shù)h(x) v5二維二維Dirac函數(shù)函數(shù) MMQQI激光脈沖及其它小光源 早在一個(gè)多世紀(jì)前,物理學(xué)家就感到有必要引入一個(gè)數(shù)學(xué)符號(hào)來(lái)描述一類(lèi)物理量,當(dāng)時(shí)用于描述這種物理量的數(shù)學(xué)符號(hào)被稱(chēng)之為沖擊脈沖符號(hào)。1947年,英國(guó)物理學(xué)家P.A.M.Dirac在他的著作Principle of Quantum Mechanics中正式引入(x),并稱(chēng)它為奇異函數(shù)或廣義
2、函數(shù)。 (x)函數(shù)之所以被稱(chēng)為奇異函數(shù)奇異函數(shù)或廣義函數(shù)廣義函數(shù),原因在于:一、它不象普通函數(shù)那樣存在確定的函數(shù)值,而是一種極限狀態(tài),而且它的極限也和普通函數(shù)不同,不是收斂到定值,而是收斂到無(wú)窮大;二、函數(shù)不象普通函數(shù)那樣進(jìn)行四則運(yùn)算和乘冪運(yùn)算,它對(duì)別的函數(shù)的作用只能通過(guò)積分來(lái)確定。 1Dirac 函數(shù)的定義函數(shù)的定義 對(duì)于自變量為一維的函數(shù)函數(shù)(x)來(lái)說(shuō),它滿(mǎn)足下列條件: 1)(000)(dxxxxx,(1) 這表明,(x)函數(shù)在x0點(diǎn)處處為零,在x=0點(diǎn)出現(xiàn)無(wú)窮大極值,x=0點(diǎn)又稱(chēng)為奇異點(diǎn)。但是,盡管(0)趨近于無(wú)窮大,對(duì)它的積分卻等于1,即對(duì)應(yīng)著函數(shù)的面積或強(qiáng)度等于1,所以(x)又叫做單
3、位脈沖函數(shù)單位脈沖函數(shù)。 很顯然,等式: )0()()(fdxxxf(2) 成立。f(x)是定義在區(qū)間(-,)上的連續(xù)函數(shù)。 在光學(xué)里,(x)函數(shù)常常用來(lái)表示位于坐標(biāo)原點(diǎn)的具有單位光功率的點(diǎn)光源點(diǎn)光源,由于點(diǎn)光源所占面積趨近于零,所以在x=0點(diǎn)功率密度趨近于無(wú)窮大。 在(1)和(2)中變換原點(diǎn),得到: )()()(000)(afdxaxxfaxaxax,(3) 其中a為任意常數(shù)。因此用(x-a)乘x的函數(shù),并對(duì)所有x積分的過(guò)程,等效于用a代替x的過(guò)程。 *定義的另外形式:2(x)可以用一些連續(xù)函數(shù)的序列極限來(lái)表示可以用一些連續(xù)函數(shù)的序列極限來(lái)表示 1)、歸一化的Gauss分布函數(shù)G(x): )
4、2exp(21)(22xxG(4) 該函數(shù)具有如下的性質(zhì): 22)(1)(dxxGxdxxG(5) 當(dāng)0時(shí),G(x)就趨向于(x),即: )2exp(21lim)(lim)(2200 xxGx(6) 1)(000)(dxxxxx,(1) )()()(000)(afdxaxxfaxaxax,(3) 證明:由(4)式可以看出,當(dāng)x=0,0時(shí), )2exp(21lim)(lim2200 xxG而當(dāng)x0,0時(shí), 0)2exp(21lim)(lim2200 xxG由公式(5)得: 1)(lim)(lim00dxxGdxxG所以由公式(6)所定義的函數(shù)滿(mǎn)足(x)函數(shù)的條件(1)式??梢?jiàn)歸一化的Gauss函
5、數(shù)的序列極限可以表示(x)函數(shù)。 2)、函數(shù) xxsinxxsinlim的極限 也滿(mǎn)足(x)函數(shù)的條件: xxxsinlim)(7) 其中0。 證明:當(dāng)x=0時(shí), limsinlimsinlimxxxx 當(dāng)x0時(shí),sin(x)/(x) 以周期2/振蕩,振幅隨著|x|的增加而減小。所以,當(dāng)時(shí),sin0 xx0sinlimsinlimxxxx于是有: 當(dāng)0時(shí),查找定積分表可得到: dxxxsin所以有:1sinlimsinlimdxxxdxxxxxsinxxsinlim的極限 根據(jù)上述討論可知,函數(shù) 滿(mǎn)足(x)函數(shù)的條件,可以表示Dirac (x)函數(shù),即(7)式成立。 3)、函數(shù) 22sinxx
6、的極限 22sinlimxx也滿(mǎn)足(x)函數(shù)的條件,即: 22sinlim)(xxx(8) 其中0。 證明:當(dāng)x=0時(shí), limsinlimsinlim222xxxx當(dāng)x0時(shí),sin(x)/(x) 以周期2/振蕩,振幅隨著|x|的增加而減小。所以:當(dāng)時(shí),sin(x)/(x)00sinlimlimsinlimsinlim2222xxxxxx于是有:查找定積分表可得到: dxxx22sin于是有: 1)()()(sinlim1sinlimsinlim222222xdxxdxxxdxxx根據(jù)上述討論可知,函數(shù) 22sinxx的極限 22sinlimxx可以表示Dirac(x)函數(shù),即式(8)成立。
7、22sinlim)(xxx(8) 4)、階躍函數(shù)的導(dǎo)數(shù)也可以表示Dirac (x)函數(shù)。 根據(jù)第一次課所講的內(nèi)容可知,階躍函數(shù)step(x)也稱(chēng)為Heaviside函數(shù),也可以用H(x)表示,其定義如下: axaxaxaxH,2101)(9)函數(shù)H(x-a)對(duì)x的導(dǎo)數(shù)也滿(mǎn)足(x)的條件,即: )()(axHdxdx(10)很容易看出,當(dāng)xa時(shí), 0lim0dxdHxHx而當(dāng)x=a時(shí), dxdHxHx0lim利用分步法計(jì)算積分,有: aaafxffdxxffdxxfaxHxfaxHdxaxHdxdxf)(| )()()( )()( )(| )()()()(根據(jù)以上討論,再結(jié)合式(3)可知,Hea
8、viside函數(shù)H(x-a)對(duì)x的導(dǎo)數(shù)可以表示Dirac (x)函數(shù),即式(10)成立。 證明:3Dirac函數(shù)的性質(zhì)函數(shù)的性質(zhì)性質(zhì)性質(zhì)1)、積分性質(zhì)、積分性質(zhì):函數(shù)的定義式:1)(dxx1)(0dxxx即表明了函數(shù)的積分性質(zhì),這個(gè)積分也可稱(chēng)之為函數(shù)的強(qiáng)度。性質(zhì)性質(zhì)2)、篩選性質(zhì)、篩選性質(zhì):式(2)表明了函數(shù)的篩選性質(zhì)。)()()(afdxaxxf則是其推論。 )0()()(fdxxxf(2) 而式(3)中的由此得出推論:性質(zhì)性質(zhì)3)、坐標(biāo)縮放性質(zhì)、坐標(biāo)縮放性質(zhì),設(shè)a為常數(shù),且不為零,則有: )0(|)()(aaxax推論1: (-x)=(x) 說(shuō)明函數(shù)具有偶對(duì)稱(chēng)性。 推論2:)0)(|)(a
9、xaax性質(zhì)性質(zhì)4)、函數(shù)的乘法性質(zhì)函數(shù)的乘法性質(zhì):如果f(x)在x0點(diǎn)連續(xù),則有: )()()()(000 xfxxxxxf由此得出推論:x(x)=0和)()(xxdxdx)()()(badxbxxa4復(fù)合函數(shù)形式的復(fù)合函數(shù)形式的函數(shù)函數(shù)h(x) 設(shè)方程h(x)=0有n個(gè)實(shí)數(shù)根x1,x2,xn,則在任意實(shí)根xi附近足夠小的鄰域內(nèi)有:h(x)= h(xi)( x-xi)其中h(xi)是h(x)在x=xi處的一階導(dǎo)數(shù)。 如果h (xi)0,則在xi附近可以寫(xiě)出:| )( |)(iixhxxh(x)=h(xi)( x-xi)=上式表明,h(x)是由n個(gè)脈沖構(gòu)成的脈沖系列,各個(gè)脈沖位置由方程h(x)
10、=0的n個(gè)實(shí)根確定,各脈沖的強(qiáng)度則由系數(shù)| h (xi)|-1來(lái)確定。 若h (xi)在n個(gè)實(shí)根處皆不為零,則有: niiixhxxxh1| )( |)()(h (xi)0 )0)()(21)(22aaxaxaax)()(|1)(babxaxbabxax)()(|2xxxnnxx)(1)sin(推論:5二維函數(shù)二維函數(shù)函數(shù)函數(shù) *1、直角坐標(biāo)系的情況二維函數(shù)表示為(x, y),它是位于xy平面坐標(biāo)原點(diǎn)處的一個(gè)單位脈沖。二維函數(shù)是可分離變量函數(shù),即有:(x, y)= (x)(y)二維函數(shù)的性質(zhì)以及其證明過(guò)程與一維函數(shù)的情形相同。*2、極坐標(biāo)系的情況(x,y) (r,) ,必須要保證:1)、脈沖位置相同;2)、二者強(qiáng)度(即曲面下體積)相同。只有這樣,坐標(biāo)變換才是等價(jià)的。)2,(0 yr)23,(0 yr),(00rr幾個(gè)二維函數(shù)在兩種坐標(biāo)系中的位置關(guān)系 20200yxr)arctan(000 xy表1考慮到脈沖強(qiáng)度的對(duì)應(yīng)關(guān)系,下面給出兩個(gè)二維函數(shù)坐標(biāo)變換的例子:顯然,(x,y)和(r)的位置相同。)(1),(rryx1),(dxdyyx1)(21)(120020 ddrrrdrdrr例1)、可見(jiàn),脈沖位置和強(qiáng)度都相同,所以坐標(biāo)變換成立。rr)(曲面下的體積為:而證明:(x,y)曲面下的體積為:例2)、 ),(1),(0000r
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 車(chē)輛抵押合同借款范本年
- 商品采購(gòu)合同范本年
- 合同協(xié)議補(bǔ)充模板
- 鋼鐵項(xiàng)目擔(dān)保合同
- 攝影師勞動(dòng)合同范本
- 商品混凝土合同書(shū)范本
- 草坪種植合同協(xié)議書(shū)模板范本
- 租賃合同申請(qǐng)書(shū)年
- 空置房屋轉(zhuǎn)讓合同模板
- 部編版道德與法治九年級(jí)上冊(cè)《我們的夢(mèng)想》聽(tīng)課評(píng)課記錄1
- DL-T+5196-2016火力發(fā)電廠(chǎng)石灰石-石膏濕法煙氣脫硫系統(tǒng)設(shè)計(jì)規(guī)程
- 2024-2030年中國(guó)產(chǎn)教融合行業(yè)市場(chǎng)運(yùn)營(yíng)態(tài)勢(shì)及發(fā)展前景研判報(bào)告
- 2024年微生物檢測(cè)試劑行業(yè)商業(yè)計(jì)劃書(shū)
- 高中英語(yǔ)選擇性必修一單詞表
- 物業(yè)公司介紹
- (正式版)SHT 3551-2024 石油化工儀表工程施工及驗(yàn)收規(guī)范
- JTGT H21-2011 公路橋梁技術(shù)狀況評(píng)定標(biāo)準(zhǔn)
- 【永輝超市公司員工招聘問(wèn)題及優(yōu)化(12000字論文)】
- 中國(guó)直銷(xiāo)發(fā)展四個(gè)階段解析
- 2024屆浙江省寧波市鎮(zhèn)海區(qū)鎮(zhèn)海中學(xué)高一物理第一學(xué)期期末質(zhì)量檢測(cè)試題含解析
- 部編版語(yǔ)文四年級(jí)下冊(cè) 教材解讀
評(píng)論
0/150
提交評(píng)論