版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、3.1.2 兩角和與差的正弦、余弦、正切公式整體設(shè)計(jì)教學(xué)分析1.兩角和與差的正弦、余弦、正切公式是在研究了兩角差的余弦公式的基礎(chǔ)上,進(jìn)一步研究具有“兩角和差”關(guān)系的正弦、余弦、正切公式的.在這些公式的推導(dǎo)中,教科書都把對(duì)照、比較有關(guān)的三角函數(shù)式,認(rèn)清其區(qū)別,尋找其聯(lián)系和聯(lián)系的途徑作為思維的起點(diǎn),如比較cos(-)與cos(+),它們都是角的余弦只是角形式不同,但不同角的形式從運(yùn)算或換元的角度看都有內(nèi)在聯(lián)系,即+=-(-)的關(guān)系,從而由公式C(-)推得公式C(+),又如比較sin(-)與cos(-),它們包含的角相同但函數(shù)名稱不同,這就要求進(jìn)行函數(shù)名的互化,利用誘導(dǎo)公式(5)(6)即可推得公式S
2、(-)、S(+)等.2.通過對(duì)“兩角和與差的正弦、余弦、正切公式”的推導(dǎo),揭示了兩角和、差的三角函數(shù)與這兩角的三角函數(shù)的運(yùn)算規(guī)律,還使學(xué)生加深了數(shù)學(xué)公式的推導(dǎo)、證明方法的理解.因此本節(jié)內(nèi)容也是培養(yǎng)學(xué)生運(yùn)算能力和邏輯思維能力的重要內(nèi)容,對(duì)培養(yǎng)學(xué)生的探索精神和創(chuàng)新能力,發(fā)現(xiàn)問題和解決問題的能力都有著十分重要的意義.3.本節(jié)的幾個(gè)公式是相互聯(lián)系的,其推導(dǎo)過程也充分說明了它們之間的內(nèi)在聯(lián)系,讓學(xué)生深刻領(lǐng)會(huì)它們的這種聯(lián)系,從而加深對(duì)公式的理解和記憶.本節(jié)幾個(gè)例子主要目的是為了訓(xùn)練學(xué)生思維的有序性,逐步培養(yǎng)他們良好的思維習(xí)慣,教學(xué)中應(yīng)當(dāng)有意識(shí)地對(duì)學(xué)生的思維習(xí)慣進(jìn)行引導(dǎo),例如在面對(duì)問題時(shí),要注意先認(rèn)真分析條
3、件,明確要求,再思考應(yīng)該聯(lián)系什么公式,使用公式時(shí)要具備什么條件等.另外,還要重視思維過程的表述,不能只看最后結(jié)果而不顧過程表述的正確性、簡(jiǎn)捷性等,這些都是培養(yǎng)學(xué)生三角恒等變換能力所不能忽視的.三維目標(biāo)1.在學(xué)習(xí)兩角差的余弦公式的基礎(chǔ)上,通過讓學(xué)生探索、發(fā)現(xiàn)并推導(dǎo)兩角和與差的正弦、余弦、正切公式,了解它們之間的內(nèi)在聯(lián)系,并通過強(qiáng)化題目的訓(xùn)練,加深對(duì)公式的理解,培養(yǎng)學(xué)生的運(yùn)算能力及邏輯推理能力,從而提高解決問題的能力.2.通過兩角和與差的正弦、余弦、正切公式的運(yùn)用,會(huì)進(jìn)行簡(jiǎn)單的求值、化簡(jiǎn)、恒等證明,使學(xué)生深刻體會(huì)聯(lián)系變化的觀點(diǎn),自覺地利用聯(lián)系變化的觀點(diǎn)來分析問題,提高學(xué)生分析問題解決問題的能力.3
4、.通過本節(jié)學(xué)習(xí),使學(xué)生掌握尋找數(shù)學(xué)規(guī)律的方法,提高學(xué)生的觀察分析能力,培養(yǎng)學(xué)生的應(yīng)用意識(shí),提高學(xué)生的數(shù)學(xué)素質(zhì).重點(diǎn)難點(diǎn)教學(xué)重點(diǎn):兩角和與差的正弦、余弦、正切公式及其推導(dǎo).教學(xué)難點(diǎn):靈活運(yùn)用所學(xué)公式進(jìn)行求值、化簡(jiǎn)、證明.課時(shí)安排2課時(shí)教學(xué)過程第1課時(shí)導(dǎo)入新課 思路1.(舊知導(dǎo)入)教師先讓學(xué)生回顧上節(jié)課所推導(dǎo)的兩角差的余弦公式,并把公式默寫在黑板上或打出幻燈片,注意有意識(shí)地讓學(xué)生寫整齊.然后教師引導(dǎo)學(xué)生觀察cos(-)與cos(+)、sin(-)的內(nèi)在聯(lián)系,進(jìn)行由舊知推出新知的轉(zhuǎn)化過程,從而推導(dǎo)出C(+)、S(-)、S(+).本節(jié)課我們共同研究公式的推導(dǎo)及其應(yīng)用. 思路2.(問題導(dǎo)入)教師出示問題
5、,先讓學(xué)生計(jì)算以下幾個(gè)題目,既可以復(fù)習(xí)回顧上節(jié)所學(xué)公式,又為本節(jié)新課作準(zhǔn)備.若sin=2 / 21,(0,),cos=,(0,),求cos(-),cos(+)的值.學(xué)生利用公式C(-)很容易求得cos(-),但是如果求cos(+)的值就得想法轉(zhuǎn)化為公式C(-)的形式來求,此時(shí)思路受阻,從而引出新課題,并由此展開聯(lián)想探究其他公式.推進(jìn)新課新知探究提出問題還記得兩角差的余弦公式嗎?請(qǐng)一位同學(xué)到黑板上默寫出來.在公式C(-)中,角是任意角,請(qǐng)學(xué)生思考角-中換成角-是否可以?此時(shí)觀察角+與-(-)之間的聯(lián)系,如何利用公式C(-)來推導(dǎo)cos(+)=?分析觀察C(+)的結(jié)構(gòu)有何特征?在公式C(-)、C(
6、+)的基礎(chǔ)上能否推導(dǎo)sin(+)=?sin(-)=?公式S(-)、S(+)的結(jié)構(gòu)特征如何?對(duì)比分析公式C(-)、C(+)、S(-)、S(+),能否推導(dǎo)出tan(-)=?tan(+)=?分析觀察公式T(-)、T(+)的結(jié)構(gòu)特征如何?思考如何靈活運(yùn)用公式解題? 活動(dòng):對(duì)問題,學(xué)生默寫完后,教師打出課件,然后引導(dǎo)學(xué)生觀察兩角差的余弦公式,點(diǎn)撥學(xué)生思考公式中的,既然可以是任意角,是怎樣任意的?你會(huì)有些什么樣的奇妙想法呢?鼓勵(lì)學(xué)生大膽猜想,引導(dǎo)學(xué)生比較cos(-)與cos(+)中角的內(nèi)在聯(lián)系,學(xué)生有的會(huì)發(fā)現(xiàn)-中的角可以變?yōu)榻?,所以-(-)=+也有的會(huì)根據(jù)加減運(yùn)算關(guān)系直接把和角+化成差角-(-)的形式.
7、這時(shí)教師適時(shí)引導(dǎo)學(xué)生轉(zhuǎn)移到公式C(-)上來,這樣就很自然地得到cos(+)=cos-(-)=coscos(-)+sinsin(-)=coscos-sinsin.所以有如下公式:cos(+)=coscos-sinsin我們稱以上等式為兩角和的余弦公式,記作C(+).對(duì)問題,教師引導(dǎo)學(xué)生細(xì)心觀察公式C(+)的結(jié)構(gòu)特征,可知“兩角和的余弦,等于這兩角的余弦積減去這兩角的正弦積”,同時(shí)讓學(xué)生對(duì)比公式C(-)進(jìn)行記憶,并填空:cos75°=cos(_)=_=_.對(duì)問題,上面學(xué)生推得了兩角和與差的余弦公式,教師引導(dǎo)學(xué)生觀察思考,怎樣才能得到兩角和與差的正弦公式呢?我們利用什么公式來實(shí)現(xiàn)正、余弦的
8、互化呢?學(xué)生可能有的想到利用誘導(dǎo)公式來化余弦為正弦(也有的想到利用同角的平方和關(guān)系式sin2+cos2=1來互化,此法讓學(xué)生課下進(jìn)行),因此有sin(+)=cos-(+)=cos(-)-=cos(-)cos+sin(-)sin=sincos+cossin.在上述公式中,用-代之,則sin(-)=sin+(-)=sincos(-)+cossin(-)=sincos-cossin.因此我們得到兩角和與差的正弦公式,分別簡(jiǎn)記為S(+)、S(-).sin(+)=sincos+cossin,sin(-)=sincos-cossin. 對(duì)問題,教師恰時(shí)恰點(diǎn)地引導(dǎo)學(xué)生觀察公式的結(jié)構(gòu)特征并結(jié)合推導(dǎo)過程進(jìn)行記憶
9、,同時(shí)進(jìn)一步體會(huì)本節(jié)公式的探究過程及公式變化特點(diǎn),體驗(yàn)三角公式的這種簡(jiǎn)潔美、對(duì)稱美.為強(qiáng)化記憶,教師可讓學(xué)生填空,如sin(+)=_,sin=_. 對(duì)問題,教師引導(dǎo)學(xué)生思考,在我們推出了公式C(-)、C(+)、S(+)、S(-)后,自然想到兩角和與差的正切公式,怎么樣來推導(dǎo)出tan(-)=?,tan(+)=?呢?學(xué)生很容易想到利用同角三角函數(shù)關(guān)系式,化弦為切得到.在學(xué)生探究推導(dǎo)時(shí)很可能想不到討論,這時(shí)教師不要直接提醒,讓學(xué)生自己悟出來.當(dāng)cos(+)0時(shí),tan(+)=如果coscos0,即cos0且cos0時(shí),分子、分母同除以coscos得tan(+)=,據(jù)角、的任意性,在上面的式子中,用-
10、代之,則有tan(-)=由此推得兩角和、差的正切公式,簡(jiǎn)記為T(-)、T(+).tan(+)=tan(-)= 對(duì)問題,讓學(xué)生自己聯(lián)想思考,兩角和與差的正切公式中、±的取值是任意的嗎?學(xué)生回顧自己的公式探究過程可知,、±都不能等于+k(kZ),并引導(dǎo)學(xué)生分析公式結(jié)構(gòu)特征,加深公式記憶. 對(duì)問題,教師與學(xué)生一起歸類總結(jié),我們把前面六個(gè)公式分類比較可得C(+)、S(+)、T(+)叫和角公式;S(-)、C(-)、T(-)叫差角公式.并由學(xué)生歸納總結(jié)以上六個(gè)公式的推導(dǎo)過程,從而得出以下邏輯聯(lián)系圖.可讓學(xué)生自己畫出這六個(gè)框圖.通過邏輯聯(lián)系圖,深刻理解它們之間的內(nèi)在聯(lián)系,借以理解并靈活運(yùn)
11、用這些公式.同時(shí)教師應(yīng)提醒學(xué)生注意:不僅要掌握這些公式的正用,還要注意它們的逆用及變形用.如兩角和與差的正切公式的變形式 tan+tan=tan(+)(1-tantan),tan-tan=tan(-)(1+tantan),在化簡(jiǎn)求值中就經(jīng)常應(yīng)用到,使解題過程大大簡(jiǎn)化,也體現(xiàn)了數(shù)學(xué)的簡(jiǎn)潔美.對(duì)于兩角和與差的正切公式,當(dāng)tan,tan或tan(±)的值不存在時(shí),不能使用T(±)處理某些有關(guān)問題,但可改用誘導(dǎo)公式或其他方法,例如:化簡(jiǎn)tan(-),因?yàn)閠an的值不存在,所以改用誘導(dǎo)公式tan(-)=來處理等.應(yīng)用示例思路1例1 已知sin=,是第四象限角,求sin(-),cos(
12、+),tan(-)的值. 活動(dòng):教師引導(dǎo)學(xué)生分析題目中角的關(guān)系,在面對(duì)問題時(shí)要注意認(rèn)真分析條件,明確要求.再思考應(yīng)該聯(lián)系什么公式,使用公式時(shí)要有什么準(zhǔn)備,準(zhǔn)備工作怎么進(jìn)行等.例如本題中,要先求出cos,tan的值,才能利用公式得解,本題是直接應(yīng)用公式解題,目的是為了讓學(xué)生初步熟悉公式的應(yīng)用,教師可以完全讓學(xué)生自己獨(dú)立完成.解:由sin=,是第四象限角,得cos=.tan=.于是有sin(-)=sincos-cossin=cos(+)=coscos-sinsin=tan(-)=. 點(diǎn)評(píng):本例是運(yùn)用和差角公式的基礎(chǔ)題,安排這個(gè)例題的目的是為了訓(xùn)練學(xué)生思維的有序性,逐步培養(yǎng)他們良好的思維習(xí)慣.變式訓(xùn)
13、練1.不查表求cos75°,tan105°的值.解:cos75°=cos(45°+30°)=cos45°cos30°-sin45°sin30°=,tan105°=tan(60°+45°)= =-(2+).2.設(shè)(0,),若sin=,則2sin(+)等于( )A. B. C. D.4答案:A例2 已知sin=,(,),cos=,(,).求sin(-),cos(+),tan(+). 活動(dòng):教師可先讓學(xué)生自己探究解決,對(duì)探究困難的學(xué)生教師給以適當(dāng)?shù)狞c(diǎn)撥,指導(dǎo)學(xué)生認(rèn)真分析題目中已知條
14、件和所求值的內(nèi)在聯(lián)系.根據(jù)公式S(-)、C(+)、T(+)應(yīng)先求出cos、sin、tan、tan的值,然后利用公式求值,但要注意解題中三角函數(shù)值的符號(hào).解:由sin=,(,),得cos=-=,tan=.又由cos=,(,).sin=,tan=.sin(-)=sincos-cossin=×()-(.cos(+)=coscos-sinsin=()×()-×()=tan(+)=. 點(diǎn)評(píng):本題仍是直接利用公式計(jì)算求值的基礎(chǔ)題,其目的還是讓學(xué)生熟練掌握公式的應(yīng)用,訓(xùn)練學(xué)生的運(yùn)算能力.變式訓(xùn)練 引導(dǎo)學(xué)生看章頭圖,利用本節(jié)所學(xué)公式解答課本章頭題,加強(qiáng)學(xué)生的應(yīng)用意識(shí).解:設(shè)電視發(fā)
15、射塔高CD=x米,CAB=,則sin=,在RtABD中,tan(45°+)=tan.于是x=,又sin=,(0,),cos,tan.tan(45°+)=3,x=-30=150(米).答:這座電視發(fā)射塔的高度約為150米.例3 在ABC中,sinA=(0°<A<45°),cosB=(45°<B<90°),求sinC與cosC的值. 活動(dòng):本題是解三角形問題,在必修5中還作專門的探究,這里用到的僅是與三角函數(shù)誘導(dǎo)公式與和差公式有關(guān)的問題,難度不大,但應(yīng)是學(xué)生必須熟練掌握的.同時(shí)也能加強(qiáng)學(xué)生的應(yīng)用意識(shí),提高學(xué)生分析問
16、題和解決問題的能力.教師可讓學(xué)生自己閱讀、探究、討論解決,對(duì)有困難的學(xué)生教師引導(dǎo)學(xué)生分析題意和找清三角形各角之間的內(nèi)在聯(lián)系,從而找出解決問題的路子.教師要提醒學(xué)生注意角的范圍這一暗含條件.解:在ABC中,A+B+C=180°,C=180°-(A+B).又sinA=且0°<A<45°,cosA=.又cosB=且45°<B<90°,sinB=.sinC=sin180°-(A+B)=sin(A+B)=sinAcosB+cosAsinB=×+×=,cosC=cos180°-(A+
17、B)=-cos(A+B)=sinAsinB-cosAcosB=×-×=. 點(diǎn)評(píng):本題是利用兩角和差公式,來解決三角形問題的典型例子,培養(yǎng)了學(xué)生的應(yīng)用意識(shí),也使學(xué)生更加認(rèn)識(shí)了公式的作用,解決三角形問題時(shí),要注意三角形內(nèi)角和等于180°這一暗含條件.變式訓(xùn)練 在ABC中,已知sin(A-B)cosB+cos(A-B)sinB1,則ABC是( )A.銳角三角形 B.鈍角三角形C.直角三角形 D.等腰非直角三角形答案:C思路2例1 若sin(+)=,cos(-)=,且0<<<<,求cos(+)的值. 活動(dòng):本題是一個(gè)典型的變角問題,也是一道經(jīng)典例題
18、,對(duì)訓(xùn)練學(xué)生的運(yùn)算能力以及邏輯思維能力很有價(jià)值.盡管學(xué)生思考時(shí)有點(diǎn)難度,但教師仍可放手讓學(xué)生探究討論,教師不可直接給出解答.對(duì)于探究不出的學(xué)生,教師可恰當(dāng)點(diǎn)撥引導(dǎo),指導(dǎo)學(xué)生解決問題的關(guān)鍵是尋找所求角與已知角的內(nèi)在聯(lián)系,引導(dǎo)學(xué)生理清所求的角與已知角的關(guān)系,觀察選擇應(yīng)該選用哪個(gè)公式進(jìn)行求解,同時(shí)也要特別提醒學(xué)生注意:在求有關(guān)角的三角函數(shù)值時(shí),要特別注意確定準(zhǔn)角的范圍,準(zhǔn)確判斷好三角函數(shù)符號(hào),這是解決這類問題的關(guān)鍵.學(xué)生完全理清思路后,教師應(yīng)指導(dǎo)學(xué)生的規(guī)范書寫,并熟練掌握它.對(duì)于程度比較好的學(xué)生可讓其擴(kuò)展本題,或變化條件,或變換所求的結(jié)論等.如教師可變換,角的范圍,進(jìn)行一題多變訓(xùn)練,提高學(xué)生靈活應(yīng)用
19、公式的能力,因此教師要充分利用好這個(gè)例題的訓(xùn)練價(jià)值.解:0<<<<,<+<,-<-<0,又已知sin(+)=,cos(-)=,cos(+)=,sin(-)=.cos(+)=sin+(+)=sin(+)-(-)=sin(+)cos(-)-cos(+)sin(-)=×-()×()=. 本題是典型的變角問題,即把所求角利用已知角來表示,實(shí)際上就是化歸思想.這需要巧妙地引導(dǎo),充分讓學(xué)生自己動(dòng)手進(jìn)行角的變換,培養(yǎng)學(xué)生靈活運(yùn)用公式的能力.變式訓(xùn)練 已知,(,),sin(+)=,sin(-)=,求cos(+)的值.解:,(,),sin(+)
20、=,sin(-)=,<+<2,<-<.cos(+)=,cos(-)=. cos(+)=cos(+)-(-)=cos(+)cos(-)+sin(+)sin(-)=×()+()×=.例2 化簡(jiǎn) 活動(dòng):本題是直接利用公式把兩角的和、差化為兩單角的三角函數(shù)的形式,教師可以先讓學(xué)生自己獨(dú)立地探究,然后進(jìn)行講評(píng).解:原式=0.點(diǎn)評(píng):本題是一個(gè)很好的運(yùn)用公式進(jìn)行化簡(jiǎn)的例子,通過學(xué)生獨(dú)立解答,培養(yǎng)學(xué)生熟練運(yùn)用公式的運(yùn)算能力.變式訓(xùn)練化簡(jiǎn)解:原式=知能訓(xùn)練課本本節(jié)練習(xí)14.1.(1),(2),(3),(4)2-.2.3.4.-2.作業(yè)已知0<<,<&
21、lt;,cos(-)=,sin(+)=,求sin(+)的值.解:<<,<-<0.sin(-)=.又0<<,<+<,cos(+)=.sin(+)=-cos(+)=-cos(+)-(-)=-cos(+)cos(-)-sin(+)sin(-)=-()××()=.課堂小結(jié)1.先由學(xué)生回顧本節(jié)課都學(xué)到了哪些數(shù)學(xué)知識(shí)和數(shù)學(xué)方法,有哪些收獲與提高,在公式推導(dǎo)中你悟出了什么樣的數(shù)學(xué)思想?對(duì)于這六個(gè)公式應(yīng)如何對(duì)比記憶?其中正切公式的應(yīng)用有什么條件限制?怎樣用公式進(jìn)行簡(jiǎn)單三角函數(shù)式的化簡(jiǎn)、求值與恒等式證明.2.教師畫龍點(diǎn)睛:我們本節(jié)課要理解并掌握
22、兩角和與差的正弦、余弦、正切公式及其推導(dǎo),明白從已知推得未知,理解數(shù)學(xué)中重要的數(shù)學(xué)思想轉(zhuǎn)化思想,并要正確熟練地運(yùn)用公式解題.在解題時(shí)要注意分析三角函數(shù)名稱、角的關(guān)系,一個(gè)題目能給出多種解法,從中比較最佳解決問題的途徑,以達(dá)到優(yōu)化解題過程,規(guī)范解題步驟,領(lǐng)悟變換思路,強(qiáng)化數(shù)學(xué)思想方法之目的.設(shè)計(jì)感想1.本節(jié)課是典型的公式教學(xué)模式,是在兩角差的余弦公式的基礎(chǔ)上進(jìn)行的,因此本教案的設(shè)計(jì)流程是“提出問題轉(zhuǎn)化推導(dǎo)分析記憶應(yīng)用訓(xùn)練”.它充分展示了公式教學(xué)中以學(xué)生為主體,進(jìn)行主動(dòng)探索數(shù)學(xué)知識(shí)發(fā)生、發(fā)展的過程.同時(shí)充分發(fā)揮教師的主導(dǎo)作用,引導(dǎo)學(xué)生利用舊知識(shí)推導(dǎo)證明新知識(shí),并學(xué)會(huì)記憶公式的方法,靈活運(yùn)用公式解決
23、實(shí)際問題,從而使學(xué)生領(lǐng)會(huì)了數(shù)學(xué)中重要的數(shù)學(xué)思想轉(zhuǎn)化思想,并培養(yǎng)他們主動(dòng)利用轉(zhuǎn)化思想指導(dǎo)探索解決數(shù)學(xué)問題的能力.2.縱觀本教案的設(shè)計(jì),知識(shí)點(diǎn)集中,容量較大,重點(diǎn)是公式的推導(dǎo)證明、記憶以及簡(jiǎn)單的應(yīng)用等,通過本節(jié)的學(xué)習(xí),使學(xué)生深刻理解公式的推導(dǎo)、證明方法,熟練應(yīng)用公式解決簡(jiǎn)單的問題.同時(shí)教給學(xué)生發(fā)現(xiàn)規(guī)律、探索推導(dǎo)、獲取新知的方法,讓他們真正體驗(yàn)到自己發(fā)現(xiàn)探索數(shù)學(xué)知識(shí)的喜悅和成功感.第2課時(shí)導(dǎo)入新課 思路1.(復(fù)習(xí)導(dǎo)入)讓學(xué)生回憶上節(jié)課所學(xué)的六個(gè)公式,并回憶公式的來龍去脈,然后讓一個(gè)學(xué)生把公式默寫在黑板上或打出幻燈.教師引導(dǎo)學(xué)生回顧比較各公式的結(jié)構(gòu)特征,說出它們的區(qū)別和聯(lián)系,以及公式的正用、逆用及變形
24、用,以利于對(duì)公式的深刻理解.這節(jié)課我們將進(jìn)一步探究?jī)山呛团c差的正弦、余弦、正切公式的靈活應(yīng)用. 思路2.(問題導(dǎo)入)教師可打出幻燈,出示一組練習(xí)題讓學(xué)生先根據(jù)上節(jié)課所學(xué)的公式進(jìn)行解答.1.化簡(jiǎn)下列各式(1)cos()cossin()sin;(2);(3)2.證明下列各式(1)(2)tan()tan(-)(1-tan2tan2)tan2-tan2;(3)答案:1.(1)cos;(2)0;(3)1.2.證明略.教師根據(jù)學(xué)生的解答情況進(jìn)行一一點(diǎn)撥,并對(duì)上節(jié)課所學(xué)的六個(gè)公式進(jìn)行回顧復(fù)習(xí),由此展開新課.推進(jìn)新課新知探究提出問題請(qǐng)同學(xué)們回憶這一段時(shí)間我們一起所學(xué)的和、差角公式.請(qǐng)同學(xué)們回顧兩角和與差公式的
25、區(qū)別與聯(lián)系,可從推導(dǎo)體系中思考. 活動(dòng):待學(xué)生稍做回顧后,教師打出幻燈,出示和與差角公式,讓學(xué)生進(jìn)一步在直觀上發(fā)現(xiàn)它們內(nèi)在的區(qū)別與聯(lián)系,理解公式的推導(dǎo)充分發(fā)揮了向量的工具作用,更要體會(huì)由特殊到一般的數(shù)學(xué)思想方法.教師引導(dǎo)學(xué)生觀察,當(dāng)、中有一個(gè)角為90°時(shí),公式就變成誘導(dǎo)公式,所以前面所學(xué)的誘導(dǎo)公式其實(shí)是兩角和與差公式的特例.在應(yīng)用公式時(shí),還要注意角的相對(duì)性,如=(+)-,等.讓學(xué)生在整個(gè)的數(shù)學(xué)體系中學(xué)會(huì)數(shù)學(xué)知識(shí),學(xué)會(huì)數(shù)學(xué)方法,更重要的是學(xué)會(huì)發(fā)現(xiàn)問題的方法,以及善于發(fā)現(xiàn)規(guī)律及其內(nèi)在聯(lián)系的良好習(xí)慣,提高數(shù)學(xué)素養(yǎng).sin(±)sincos±cossin(±);
26、cos(±)coscossinsinC(±);tan(±)T(±).討論結(jié)果:略.應(yīng)用示例思路1例1 利用和差角公式計(jì)算下列各式的值.(1)sin72°cos42°-cos72°sin42°(2)cos20°cos70°-sin20°sin70°(3) 活動(dòng):本例實(shí)際上是公式的逆用,主要用來熟悉公式,可由學(xué)生自己完成.對(duì)部分學(xué)生,教師點(diǎn)撥學(xué)生細(xì)心觀察題中式子的形式有何特點(diǎn),再對(duì)比公式右邊,馬上發(fā)現(xiàn)(1)同公式S(-)的右邊,(2)同公式C(+)右邊形式一致,學(xué)生自然想到公式的
27、逆用,從而化成特殊角的三角函數(shù),并求得結(jié)果.再看(3)式與T(+)右邊形式相近,但需要進(jìn)行一定的變形.又因?yàn)閠an45°=1,原式化為,再逆用公式T(+)即可解得.解:(1)由公式S(-)得原式=sin(72°-42°)=sin30°=.(2)由公式C(+)得原式=cos(20°+70°)=cos90°=0.(3)由公式T(+)得原式=tan(45°+15°)=tan60°=. 點(diǎn)評(píng):本例體現(xiàn)了對(duì)公式的全面理解,要求學(xué)生能夠從正、反兩個(gè)角度使用公式.與正用相比,反用表現(xiàn)的是一種逆向思維,它不僅要
28、求有一定的反向思維意識(shí),對(duì)思維的靈活性要求也高,而且對(duì)公式要有更全面深刻的理解.變式訓(xùn)練1.化簡(jiǎn)求值:(1)cos44°sin14°-sin44°cos14°(2)sin14°cos16°+sin76°cos74°(3)sin(54°-x)cos(36°+x)+cos(54°-x)sin(36°+x).解:(1)原式=sin(14°-44°)=sin(-30°)=-sin30°=.(2)原式=sin14°cos16°
29、+cos14°sin16°=sin(14°+16°)=sin30°=.(3)原式=sin(54°-x)+(36°+x)=sin90°=1.2.計(jì)算解:原式=tan(45°-75°)=tan(-30°)=-tan30°=.例2 已知函數(shù)f(x)=sin(x+)+cos(x-)的定義域?yàn)镽,設(shè)0,2,若f(x)為偶函數(shù),求的值. 活動(dòng):本例是一道各地常用的、基礎(chǔ)性較強(qiáng)的綜合性統(tǒng)考題,其難度較小,只需利用偶函數(shù)的定義,加上本節(jié)學(xué)到的兩角和與差的三角公式展開即可,但不容易得到滿分.教
30、師可先讓學(xué)生自己探究,獨(dú)立完成,然后教師進(jìn)行點(diǎn)評(píng).解:f(x)為偶函數(shù),f(-x)=f(x),即sin(-x+)+cos(-x-)=sin(x+)+cos(x-),即-sinxcos+cosxsin+cosxcos-sinxsin=sinxcos+cosxsin+cosxcos+sinxsin.sinxcos+sinxsin=0.sinx(sin+cos)=0對(duì)任意x都成立.sin(+)=0,即sin(+)=0.+=k(kZ).=k-(kZ).又0,2),=或=. 點(diǎn)評(píng):本例學(xué)生可能會(huì)根據(jù)偶函數(shù)的定義利用特殊值來求解.教師應(yīng)提醒學(xué)生注意,如果將本例變?yōu)檫x擇或填空,可利用特殊值快速解題,作為解答
31、題利用特殊值是不嚴(yán)密的,以此訓(xùn)練學(xué)生邏輯思維能力.變式訓(xùn)練 已知:<<<,cos(-)=,sin(+)=,求cos2的值.解:<<<,0<-<,<+<.又cos(-)=,sin(+)= ,sin(-)=,cos(+)=.cos2=cos(+)-(-)=cos(+)cos(-)+sin(+)sin(-)=×+()×=.例3 求證:cos+sin=2sin(+). 活動(dòng):本題雖小但其意義很大,從形式上就可看出來,左邊是兩個(gè)函數(shù),而右邊是一個(gè)函數(shù),教師引導(dǎo)學(xué)生給予足夠的重視.對(duì)于此題的證明,學(xué)生首先想到的證法就是把等式右
32、邊利用公式S(+)展開,化簡(jiǎn)整理即可得到左邊此為證法,這是很自然的,教師要給予鼓勵(lì).同時(shí)教師可以有目的的引導(dǎo)學(xué)生把等式左邊轉(zhuǎn)化為公式S(+)的右邊的形式,然后逆用公式化簡(jiǎn)即可求得等式右邊的式子,這種證明方法不僅僅是方法的變化,更重要的是把兩個(gè)三角函數(shù)化為一個(gè)三角函數(shù).證明:方法一:右邊=2(sincos+cossin)=2(cos+sin)=cos+sin=左邊.方法二:左邊=2(cos+sin)=2(sincos+cossin)=2sin(+)=右邊. 點(diǎn)評(píng):本題給出了兩種證法,方法一是正用公式的典例,而方法二則是逆用公式證明的,此法也給了我們一種重要的轉(zhuǎn)化方法,要求學(xué)生熟練掌握其精神實(shí)質(zhì).
33、本例的方法二將左邊的系數(shù)1與分別變?yōu)榱伺c,即輔助角的正、余弦.關(guān)于形如asinx+bcosx(a,b不同時(shí)為零)的式子,引入輔助角變形為Asin(x+)的形式,其基本想法是“從右向左”用和角的正弦公式,把它化成Asin(x+)的形式.一般情況下,如果a=os,b=Asin,那么asinx+bcosx=A(sinxcos+cosxsin)=Asin(x+).由sin2+cos2=1,可得A2=a2+b2,A=±,不妨取A=,于是得到cos=,sin=,從而得到tan=,因此asinx+bcosx=sin(x+),通過引入輔助角,可以將asinx+bcosx這種形式的三角函數(shù)式化為一個(gè)角
34、的一個(gè)三角函數(shù)的形式.化為這種形式可解決asinx+bcosx的許多問題,比如值域、最值、周期、單調(diào)區(qū)間等.教師應(yīng)提醒學(xué)生注意,這種引入輔助角的變換思想很重要,即把兩個(gè)三角函數(shù)化為一個(gè)三角函數(shù),實(shí)質(zhì)上是消元思想,這樣就可以根據(jù)三角函數(shù)的圖象與性質(zhì)來研究它的性質(zhì).因此在歷年高考試題中出現(xiàn)的頻率非常高,是三角部分中高考的熱點(diǎn),再結(jié)合續(xù)內(nèi)容的倍角公式,在解答高考物理試題時(shí)也常常被使用,應(yīng)讓學(xué)生領(lǐng)悟其實(shí)質(zhì)并熟練的掌握它.變式訓(xùn)練 化簡(jiǎn)下列各式:(1)sinx+cosx;(2)cosx-6sinx.解:(1)原式=2(sinx+cosx)=2(cossinx+sincosx)=2sin(x+).(2)原
35、式=2 (cosx-sinx)=2(sincosx-cossinx)=2sin(-x).例4 (1)已知+=45°,求(1+tan)(1+tan)的值;(2)已知sin(+)=,sin(-)=,求 活動(dòng):對(duì)于(1),教師可與學(xué)生一起觀察條件,分析題意可知,+是特殊角,可以利用兩角和的正切公式得tan,tan的關(guān)系式,從而發(fā)現(xiàn)所求式子的解題思路.在(2)中,我們欲求若利用已知條件直接求tan,tan的值是有一定的困難,但細(xì)心觀察公式S(+)、S(-)發(fā)現(xiàn),它們都含有sincos和cossin,而化切為弦正是,由此找到解題思路.教學(xué)中盡可能的讓學(xué)生自己探究解決,教師不要及早地給以提示或解
36、答.解:(1)+=45°,tan(+)=tan45°=1.又tan(+)=tan+tan=tan(+)(1-tantan),即tan+tan=1-tantan.原式=1+tan+tan+tantan=1+(1-tantan)+tantan=2.(2)sin(+)=,sin(-)= ,sincos+cossin=, sincos-coscos=. +得sincos=,-得cossin=, 點(diǎn)評(píng):本題都是公式的變形應(yīng)用,像(1)中當(dāng)出現(xiàn)+為特殊角時(shí),就可以逆用兩角和的正切公式變形tan+tan=tan(+)(1-tantan),對(duì)于我們解題很有用處,而(2)中化切為弦的求法更是
37、巧妙,應(yīng)讓學(xué)生熟練掌握其解法.變式訓(xùn)練1.求(1+tan1°)(1+tan2°)(1+tan3°)(1+tan44°)(1+tan45°)的值.解:原式=(1+tan1°)(1+tan44°)(1+tan2°)(1+tan43°)(1+tan22°)(1+tan23°)(1+tan45°)=2×2×2××2=223.2.計(jì)算:tan15°+tan30°+tan15°tan30°.解:原式=tan45°
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 廣東外語外貿(mào)大學(xué)《營養(yǎng)生理學(xué)》2023-2024學(xué)年第一學(xué)期期末試卷
- 廣東司法警官職業(yè)學(xué)院《別墅建筑設(shè)計(jì)》2023-2024學(xué)年第一學(xué)期期末試卷
- 廣東生態(tài)工程職業(yè)學(xué)院《西方經(jīng)濟(jì)學(xué)(下)》2023-2024學(xué)年第一學(xué)期期末試卷
- 七年級(jí)上冊(cè)《6.2.1直線、射線、線段》課件與作業(yè)
- 廣東南華工商職業(yè)學(xué)院《色彩靜物及人物頭像》2023-2024學(xué)年第一學(xué)期期末試卷
- 廣東梅州職業(yè)技術(shù)學(xué)院《計(jì)算機(jī)創(chuàng)客訓(xùn)練》2023-2024學(xué)年第一學(xué)期期末試卷
- 廣東茂名健康職業(yè)學(xué)院《半導(dǎo)體器件原理》2023-2024學(xué)年第一學(xué)期期末試卷
- 一年級(jí)數(shù)學(xué)計(jì)算題專項(xiàng)練習(xí)1000題匯編
- 2024八年級(jí)地理上冊(cè)第三章自然資源-我們生存和發(fā)展的物質(zhì)基礎(chǔ)學(xué)情評(píng)估晉教版
- 【2021屆備考】2020全國名校物理試題分類解析匯編(11月第二期)A4-豎直上拋運(yùn)動(dòng)
- 電力建設(shè)安全工作規(guī)程解析(線路部分)課件
- 軟膠囊生產(chǎn)工藝流程
- 小學(xué)英語不規(guī)則動(dòng)詞表
- VIC模型PPT課件
- AQL2.5抽檢標(biāo)準(zhǔn)
- 宣傳廣告彩頁制作合同
- 【語法】小學(xué)英語語法大全
- 除濕機(jī)說明書
- 征信知識(shí)測(cè)試題及答案
- 理想系列一體化速印機(jī)故障代碼
- 現(xiàn)代電路技術(shù)——故障檢測(cè)D算法
評(píng)論
0/150
提交評(píng)論