版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
1、精選優(yōu)質(zhì)文檔-傾情為你奉上直角三角形一、直角三角形的性質(zhì) 重點(diǎn):直角三角形的性質(zhì)定理及其推論:直角三角形的性質(zhì),在直角三角形中,斜邊上的中線等于斜邊的一半;推論:(1)在直角三角形中,如果一個(gè)銳角等于30°,則它所對(duì)的直角邊等于斜邊的一半;(2)在直角三角形中,如果一條直角邊等于斜邊的一半,那么這條直角邊所對(duì)的角為30°.難點(diǎn):1.性質(zhì)定理的證明方法.2.性質(zhì)定理及其推論在解題中的應(yīng)用.二、直角三角形全等的判斷重點(diǎn):掌握直角三角形全等的判定定理:斜邊、直角邊公理:斜邊和一條直角邊對(duì)應(yīng)相等的兩個(gè)直角三角形全等(HL)難點(diǎn):創(chuàng)建全等條件與三角形中各定理聯(lián)系解綜合問題。三、角平分
2、線的性質(zhì)定理1.角平分線的性質(zhì)定理:角平分線上的點(diǎn)到這個(gè)角的兩邊的距離相等. 定理的數(shù)學(xué)表示:如圖4, OE是AOB的平分線,F(xiàn)是OE上一點(diǎn),且CFOA于點(diǎn)C,DFOB于點(diǎn)D, CFDF. 定理的作用:證明兩條線段相等;用于幾何作圖問題;角是一個(gè)軸對(duì)稱圖形,它的對(duì)稱軸是角平分線所在的直線.2.關(guān)于三角形三條角平分線的定理:(1)關(guān)于三角形三條角平分線交點(diǎn)的定理:三角形三條角平分線相交于一點(diǎn),并且這一點(diǎn)到三邊的距離相等.定理的數(shù)學(xué)表示:如圖6,如果AP、BQ、CR分別是ABC的內(nèi)角BAC、 ABC、ACB的平分線,那么: AP、BQ、CR相交于一點(diǎn)I; 若ID、IE、IF分別垂直于BC、CA、A
3、B于點(diǎn)D、E、F,則DIEIFI. 定理的作用:用于證明三角形內(nèi)的線段相等;用于實(shí)際中的幾何作圖問題.(2)三角形三條角平分線的交點(diǎn)位置與三角形形狀的關(guān)系:三角形三個(gè)內(nèi)角角平分線的交點(diǎn)一定在三角形的內(nèi)部.這個(gè)交點(diǎn)叫做三角形的內(nèi)心(即內(nèi)切圓的圓心).3.關(guān)于線段的垂直平分線和角平分線的作圖:(1)會(huì)作已知線段的垂直平分線; (2)會(huì)作已知角的角平分線;(3)會(huì)作與線段垂直平分線和角平分線有關(guān)的簡單綜合問題的圖形.四、勾股定理的證明及應(yīng)用勾股定理內(nèi)容:直角三角形兩直角邊的平方和等于斜邊的平方;表示方法:如果直角三角形的兩直角邊分別為,斜邊為,那么勾股定理的由來:勾股定理也叫商高定理,在西方稱為畢達(dá)
4、哥拉斯定理我國古代把直角三角形中較短的直角邊稱為勾,較長的直角邊稱為股,斜邊稱為弦早在三千多年前,周朝數(shù)學(xué)家商高就提出了“勾三,股四,弦五”形式的勾股定理,后來人們進(jìn)一步發(fā)現(xiàn)并證明了直角三角形的三邊關(guān)系為:兩直角邊的平方和等于斜邊的平方.勾股定理的證明勾股定理的證明方法很多,常見的是拼圖的方法用拼圖的方法驗(yàn)證勾股定理的思路是圖形進(jìn)過割補(bǔ)拼接后,只要沒有重疊,沒有空隙,面積不會(huì)改變根據(jù)同一種圖形的面積不同的表示方法,列出等式,推導(dǎo)出勾股定理常見方法如下:方法一:,化簡可證方法二:四個(gè)直角三角形的面積與小正方形面積的和等于大正方形的面積四個(gè)直角三角形的面積與小正方形面積的和為大正方形面積為 所以方
5、法三:,化簡得證. 勾股定理的適用范圍勾股定理揭示了直角三角形三條邊之間所存在的數(shù)量關(guān)系,它只適用于直角三角形,對(duì)于銳角三角形和鈍角三角形的三邊就不具有這一特征,因而在應(yīng)用勾股定理時(shí),必須明了所考察的對(duì)象是直角三角形. 勾股定理的應(yīng)用已知直角三角形的任意兩邊長,求第三邊在中,則,知道直角三角形一邊,可得另外兩邊之間的數(shù)量關(guān)系可運(yùn)用勾股定理解決一些實(shí)際問題.勾股定理的逆定理如果三角形三邊長,滿足,那么這個(gè)三角形是直角三角形,其中為斜邊勾股定理的逆定理是判定一個(gè)三角形是否是直角三角形的一種重要方法,它通過“數(shù)轉(zhuǎn)化為形”來確定三角形的可能形狀,在運(yùn)用這一定理時(shí),可用兩小邊的平方和與較長邊的平方作比較
6、,若它們相等時(shí),以,為三邊的三角形是直角三角形;若,時(shí),以,為三邊的三角形是鈍角三角形;若,時(shí),以,為三邊的三角形是銳角三角形;定理中,及只是一種表現(xiàn)形式,不可認(rèn)為是唯一的,如若三角形三邊長,滿足,那么以,為三邊的三角形是直角三角形,但是為斜邊勾股定理的逆定理在用問題描述時(shí),不能說成:當(dāng)斜邊的平方等于兩條直角邊的平方和時(shí),這個(gè)三角形是直角三角形.勾股數(shù)能夠構(gòu)成直角三角形的三邊長的三個(gè)正整數(shù)稱為勾股數(shù),即中,為正整數(shù)時(shí),稱,為一組勾股數(shù)記住常見的勾股數(shù)可以提高解題速度,如;等用含字母的代數(shù)式表示組勾股數(shù):(為正整數(shù));(為正整數(shù))(,為正整數(shù))勾股定理的應(yīng)用勾股定理能夠幫助我們解決直角三角形中的
7、邊長的計(jì)算或直角三角形中線段之間的關(guān)系的證明問題在使用勾股定理時(shí),必須把握直角三角形的前提條件,了解直角三角形中,斜邊和直角邊各是什么,以便運(yùn)用勾股定理進(jìn)行計(jì)算,應(yīng)設(shè)法添加輔助線(通常作垂線),構(gòu)造直角三角形,以便正確使用勾股定理進(jìn)行求解. 勾股定理逆定理的應(yīng)用勾股定理的逆定理能幫助我們通過三角形三邊之間的數(shù)量關(guān)系判斷一個(gè)三角形是否是直角三角形,在具體推算過程中,應(yīng)用兩短邊的平方和與最長邊的平方進(jìn)行比較,切不可不加思考的用兩邊的平方和與第三邊的平方比較而得到錯(cuò)誤的結(jié)論. 勾股定理及其逆定理的應(yīng)用勾股定理及其逆定理在解決一些實(shí)際問題或具體的幾何問題中,是密不可分的一個(gè)整體通常既要通過逆定理判定一
8、個(gè)三角形是直角三角形,又要用勾股定理求出邊的長度,二者相輔相成,完成對(duì)問題的解決常見圖形:10、互逆命題的概念如果一個(gè)命題的題設(shè)和結(jié)論分別是另一個(gè)命題的結(jié)論和題設(shè),這樣的兩個(gè)命題叫做互逆命題。如果把其中一個(gè)叫做原命題,那么另一個(gè)叫做它的逆命題。勾股定理的作用: (1)已知直角三角形的兩邊求第三邊。 (2)已知直角三角形的一邊,求另兩邊的關(guān)系。(3)用于證明線段平方關(guān)系的問題。(4)利用勾股定理,作出長為的線段勾股定理經(jīng)典例題透析類型一:勾股定理的直接用法 1、在RtABC中,C=90° (1)已知a=6, c=10,求b, (2)已知a=40,b=9,求c; (3)已知c=25,b=
9、15,求a. 思路點(diǎn)撥: 寫解的過程中,一定要先寫上在哪個(gè)直角三角形中,注意勾股定理的變形使用。 解析:(1) 在ABC中,C=90°,a=6,c=10,b= (2) 在ABC中,C=90°,a=40,b=9,c= (3) 在ABC中,C=90°,c=25,b=15,a= 舉一反三 【變式】:如圖B=ACD=90°, AD=13,CD=12, BC=3,則AB的長是多少? 【答案】ACD=90° AD=13, CD=12 AC2 =AD2CD2 =132122 =25 AC=5 又ABC=90°且BC=3 由勾股定理可得 AB2=AC
10、2BC2 =5232 =16 AB= 4 AB的長是4.類型二:勾股定理的構(gòu)造應(yīng)用 2、如圖,已知:在中,. 求:BC的長. 思路點(diǎn)撥:由條件,想到構(gòu)造含角的直角三角形,為此作于D,則有,再由勾股定理計(jì)算出AD、DC的長,進(jìn)而求出BC的長. 解析:作于D,則因, (的兩個(gè)銳角互余) (在中,如果一個(gè)銳角等于, 那么它所對(duì)的直角邊等于斜邊的一半). 根據(jù)勾股定理,在中, . 根據(jù)勾股定理,在中, . . 舉一反三【變式1】如圖,已知:,于P. 求證:. 解析:連結(jié)BM,根據(jù)勾股定理,在中, . 而在中,則根據(jù)勾股定理有 . 又 (已知), . 在中,根據(jù)勾股定理有 , . 【變式2】已知:如圖,
11、B=D=90°,A=60°,AB=4,CD=2。求:四邊形ABCD的面積。 分析:如何構(gòu)造直角三角形是解本題的關(guān)鍵,可以連結(jié)AC,或延長AB、DC交于F,或延長AD、BC交于點(diǎn)E,根據(jù)本題給定的角應(yīng)選后兩種,進(jìn)一步根據(jù)本題給定的邊選第三種較為簡單。 解析:延長AD、BC交于E。 A=60°,B=90°,E=30°。 AE=2AB=8,CE=2CD=4, BE2=AE2-AB2=82-42=48,BE=。 DE2= CE2-CD2=42-22=12,DE=。 S四邊形ABCD=SABE-SCDE=AB·BE-CD·DE=類型三
12、:勾股定理的實(shí)際應(yīng)用 (一)用勾股定理求兩點(diǎn)之間的距離問題 3、如圖所示,在一次夏令營活動(dòng)中,小明從營地A點(diǎn)出發(fā),沿北偏東60°方向走了到達(dá)B點(diǎn),然后再沿北偏西30°方向走了500m到達(dá)目的地C點(diǎn)。 (1)求A、C兩點(diǎn)之間的距離。 (2)確定目的地C在營地A的什么方向。 解析:(1)過B點(diǎn)作BE/AD DAB=ABE=60° 30°+CBA+ABE=180° CBA=90° 即ABC為直角三角形 由已知可得:BC=500m,AB= 由勾股定理可得: 所以 (2)在RtABC中, BC=500m,AC=1000m CAB=30°
13、; DAB=60° DAC=30° 即點(diǎn)C在點(diǎn)A的北偏東30°的方向 舉一反三 【變式】一輛裝滿貨物的卡車,其外形高2.5米,寬1.6米,要開進(jìn)廠門形狀如圖的某工廠,問這輛卡車能否通過該工廠的廠門? 【答案】由于廠門寬度是否足夠卡車通過,只要看當(dāng)卡車位于廠門正中間時(shí)其高度是否小于CH如圖所示,點(diǎn)D在離廠門中線0.8米處,且CD, 與地面交于H 解:OC1米 (大門寬度一半), OD0.8米 (卡車寬度一半) 在RtOCD中,由勾股定理得: CD.米, C.(米).(米) 因此高度上有0.4米的余量,所以卡車能通過廠門 (二)用勾股定理求最短問題 4、國家電力總公司
14、為了改善農(nóng)村用電電費(fèi)過高的現(xiàn)狀,目前正在全國各地農(nóng)村進(jìn)行電網(wǎng)改造,某地有四個(gè)村莊A、B、C、D,且正好位于一個(gè)正方形的四個(gè)頂點(diǎn),現(xiàn)計(jì)劃在四個(gè)村莊聯(lián)合架設(shè)一條線路,他們設(shè)計(jì)了四種架設(shè)方案,如圖實(shí)線部分請你幫助計(jì)算一下,哪種架設(shè)方案最省電線 思路點(diǎn)撥:解答本題的思路是:最省電線就是線路長最短,通過利用勾股定理計(jì)算線路長,然后進(jìn)行比較,得出結(jié)論 解析:設(shè)正方形的邊長為1,則圖(1)、圖(2)中的總線路長分別為 AB+BC+CD3,AB+BC+CD3 圖(3)中,在RtABC中 同理 圖(3)中的路線長為 圖(4)中,延長EF交BC于H,則FHBC,BHCH 由FBH 及勾股定理得: EAEDFBFC
15、 EF12FH1 此圖中總線路的長為4EA+EF 32.828>2.732 圖(4)的連接線路最短,即圖(4)的架設(shè)方案最省電線 舉一反三 【變式】如圖,一圓柱體的底面周長為20cm,高為4cm,是上底面的直徑一只螞蟻從點(diǎn)A出發(fā),沿著圓柱的側(cè)面爬行到點(diǎn)C,試求出爬行的最短路程 解: 如圖,在Rt中,底面周長的一半cm, 根據(jù)勾股定理得 (提問:勾股定理) AC (cm)(勾股定理) 答:最短路程約為cm類型四:利用勾股定理作長為的線段 5、作長為、的線段。 思路點(diǎn)撥:由勾股定理得,直角邊為1的等腰直角三角形,斜邊長就等于,直角邊為和1的直角三角形斜邊長就是,類似地可作。 作法:如圖所示
16、(1)作直角邊為1(單位長)的等腰直角ACB,使AB為斜邊; (2)以AB為一條直角邊,作另一直角邊為1的直角。斜邊為; (3)順次這樣做下去,最后做到直角三角形,這樣斜邊、的長度就是 、。 舉一反三 【變式】在數(shù)軸上表示的點(diǎn)。 解析:可以把看作是直角三角形的斜邊, 為了有利于畫圖讓其他兩邊的長為整數(shù), 而10又是9和1這兩個(gè)完全平方數(shù)的和,得另外兩邊分別是3和1。 作法:如圖所示在數(shù)軸上找到A點(diǎn),使OA=3,作ACOA且截取AC=1,以O(shè)C為半徑, 以O(shè)為圓心做弧,弧與數(shù)軸的交點(diǎn)B即為。類型五:逆命題與勾股定理逆定理 6、寫出下列原命題的逆命題并判斷是否正確 1原命題:貓有四只腳(正確) 2
17、原命題:對(duì)頂角相等(正確) 3原命題:線段垂直平分線上的點(diǎn),到這條線段兩端距離相等(正確) 4原命題:角平分線上的點(diǎn),到這個(gè)角的兩邊距離相等(正確) 思路點(diǎn)撥:掌握原命題與逆命題的關(guān)系。 解析:1. 逆命題:有四只腳的是貓(不正確) 2. 逆命題:相等的角是對(duì)頂角(不正確) 3. 逆命題:到線段兩端距離相等的點(diǎn),在這條線段的垂直平分線上(正確) 4. 逆命題:到角兩邊距離相等的點(diǎn),在這個(gè)角的平分線上(正確) 總結(jié)升華:本題是為了學(xué)習(xí)勾股定理的逆命題做準(zhǔn)備。 7、如果ABC的三邊分別為a、b、c,且滿足a2+b2+c2+50=6a+8b+10c,判斷ABC的形狀。 思路點(diǎn)撥:要判斷ABC的形狀,
18、需要找到a、b、c的關(guān)系,而題目中只有條件a2+b2+c2+50=6a+8b+10c,故只有從該條件入手,解決問題。 解析:由a2+b2+c2+50=6a+8b+10c,得 : a2-6a+9+b2-8b+16+c2-10c+25=0, (a-3)2+(b-4)2+(c-5)2=0。 (a-3)20, (b-4)20, (c-5)20。 a=3,b=4,c=5。 32+42=52, a2+b2=c2。 由勾股定理的逆定理,得ABC是直角三角形。 總結(jié)升華:勾股定理的逆定理是通過數(shù)量關(guān)系來研究圖形的位置關(guān)系的,在證明中也常要用到。 舉一反三【變式1】四邊形ABCD中,B=90°,AB=
19、3,BC=4,CD=12,AD=13,求四邊形ABCD的面積。 【答案】:連結(jié)AC B=90°,AB=3,BC=4 AC2=AB2+BC2=25(勾股定理) AC=5 AC2+CD2=169,AD2=169 AC2+CD2=AD2 ACD=90°(勾股定理逆定理) 【變式2】已知:ABC的三邊分別為m2n2,2mn,m2+n2(m,n為正整數(shù),且mn),判斷ABC是否為直角三角形. 分析:本題是利用勾股定理的的逆定理, 只要證明:a2+b2=c2即可 證明: 所以ABC是直角三角形. 【變式3】如圖正方形ABCD,E為BC中點(diǎn),F(xiàn)為AB上一點(diǎn),且BF=AB。 請問FE與DE
20、是否垂直?請說明。 【答案】答:DEEF。 證明:設(shè)BF=a,則BE=EC=2a, AF=3a,AB=4a, EF2=BF2+BE2=a2+4a2=5a2; DE2=CE2+CD2=4a2+16a2=20a2。 連接DF(如圖) DF2=AF2+AD2=9a2+16a2=25a2。 DF2=EF2+DE2, FEDE。勾股定理經(jīng)典例題精析類型一:勾股定理及其逆定理的基本用法 1、若直角三角形兩直角邊的比是3:4,斜邊長是20,求此直角三角形的面積。 思路點(diǎn)撥:在直角三角形中知道兩邊的比值和第三邊的長度,求面積,可以先通過比值設(shè)未知數(shù),再根據(jù)勾股定理列出方程,求出未知數(shù)的值進(jìn)而求面積。 解析:設(shè)
21、此直角三角形兩直角邊分別是3x,4x,根據(jù)題意得: (3x)2+(4x)2202 化簡得x216; 直角三角形的面積×3x×4x6x296 總結(jié)升華:直角三角形邊的有關(guān)計(jì)算中,常常要設(shè)未知數(shù),然后用勾股定理列方程(組)求解。 舉一反三 【變式1】等邊三角形的邊長為2,求它的面積。 【答案】如圖,等邊ABC,作ADBC于D 則:BDBC(等腰三角形底邊上的高與底邊上的中線互相重合) ABACBC2(等邊三角形各邊都相等) BD1 在直角三角形ABD中,AB2AD2+BD2,即:AD2AB2BD2413 AD SABCBC·AD 注:等邊三角形面積公式:若等邊三角形邊
22、長為a,則其面積為a。【變式2】直角三角形周長為12cm,斜邊長為5cm,求直角三角形的面積。 【答案】設(shè)此直角三角形兩直角邊長分別是x,y,根據(jù)題意得: 由(1)得:x+y7, (x+y)249,x2+2xy+y249 (3) (3)(2),得:xy12 直角三角形的面積是xy×126(cm2) 【變式3】若直角三角形的三邊長分別是n+1,n+2,n+3,求n。 思路點(diǎn)撥:首先要確定斜邊(最長的邊)長n+3,然后利用勾股定理列方程求解。 解:此直角三角形的斜邊長為n+3,由勾股定理可得: (n+1)2+(n+2)2(n+3)2 化簡得:n24 n±2,但當(dāng)n2時(shí),n+11
23、<0,n2 總結(jié)升華:注意直角三角形中兩“直角邊”的平方和等于“斜邊”的平方,在題目沒有給出哪條是直角邊哪條是斜邊的情況下,首先要先確定斜邊,直角邊。 【變式4】以下列各組數(shù)為邊長,能組成直角三角形的是( ) A、8,15,17 B、4,5,6 C、5,8,10 D、8,39,40 解析:此題可直接用勾股定理的逆定理來進(jìn)行判斷, 對(duì)數(shù)據(jù)較大的可以用c2a2+b2的變形:b2c2a2(ca)(c+a)來判斷。 例如:對(duì)于選擇D, 82(40+39)×(4039), 以8,39,40為邊長不能組成直角三角形。 同理可以判斷其它選項(xiàng)。 【答案】:A 類型二:勾股定理的應(yīng)用 2、如圖,
24、公路MN和公路PQ在點(diǎn)P處交匯,且QPN30°,點(diǎn)A處有一所中學(xué),AP160m。假設(shè)拖拉機(jī)行駛時(shí),周圍100m以內(nèi)會(huì)受到噪音的影響,那么拖拉機(jī)在公路MN上沿PN方向行駛時(shí),學(xué)校是否會(huì)受到噪聲影響?請說明理由,如果受影響,已知拖拉機(jī)的速度為18km/h,那么學(xué)校受影響的時(shí)間為多少秒? 思路點(diǎn)撥:(1)要判斷拖拉機(jī)的噪音是否影響學(xué)校A,實(shí)質(zhì)上是看A到公路的距離是否小于100m, 小于100m則受影響,大于100m則不受影響,故作垂線段AB并計(jì)算其長度。(2)要求出學(xué)校受影響的時(shí)間,實(shí)質(zhì)是要求拖拉機(jī)對(duì)學(xué)校A的影響所行駛的路程。因此必須找到拖拉機(jī)行至哪一點(diǎn)開始影響學(xué)校,行至哪一點(diǎn)后結(jié)束影響學(xué)
25、校。 解析:作ABMN,垂足為B。 在 RtABP中,ABP90°,APB30°, AP160, ABAP80。 (在直角三角形中,30°所對(duì)的直角邊等于斜邊的一半) 點(diǎn) A到直線MN的距離小于100m, 這所中學(xué)會(huì)受到噪聲的影響。 如圖,假設(shè)拖拉機(jī)在公路MN上沿PN方向行駛到點(diǎn)C處學(xué)校開始受到影響,那么AC100(m), 由勾股定理得: BC21002-8023600, BC60。 同理,拖拉機(jī)行駛到點(diǎn)D處學(xué)校開始脫離影響,那么,AD100(m),BD60(m), CD120(m)。 拖拉機(jī)行駛的速度為 : 18km/h5m/s t120m÷5m/s2
26、4s。 答:拖拉機(jī)在公路 MN上沿PN方向行駛時(shí),學(xué)校會(huì)受到噪聲影響,學(xué)校受影響的時(shí)間為24秒。 總結(jié)升華:勾股定理是求線段的長度的很重要的方法,若圖形缺少直角條件,則可以通過作輔助垂線的方法,構(gòu)造直角三角形以便利用勾股定理。 舉一反三 【變式1】如圖學(xué)校有一塊長方形花園,有極少數(shù)人為了避開拐角而走“捷徑”,在花園內(nèi)走出了一條“路”。他們僅僅少走了_步路(假設(shè)2步為1m),卻踩傷了花草。 解析:他們原來走的路為3+47(m) 設(shè)走“捷徑”的路長為xm,則 故少走的路長為752(m) 又因?yàn)?步為1m,所以他們僅僅少走了4步路?!敬鸢浮? 【變式2】如圖中的虛線網(wǎng)格我們稱之為正三角形網(wǎng)格,它的每
27、一個(gè)小三角形都是邊長為1的正三角形,這樣的三角形稱為單位正三角形。 (1)直接寫出單位正三角形的高與面積。 (2)圖中的平行四邊形ABCD含有多少個(gè)單位正三角形?平行四邊形ABCD的面積是多少? (3)求出圖中線段AC的長(可作輔助線)。 【答案】(1)單位正三角形的高為,面積是。 (2)如圖可直接得出平行四邊形ABCD含有24個(gè)單位正三角形,因此其面積。 (3)過A作AKBC于點(diǎn)K(如圖所示),則在RtACK中, ,故類型三:數(shù)學(xué)思想方法(一)轉(zhuǎn)化的思想方法我們在求三角形的邊或角,或進(jìn)行推理論證時(shí),常常作垂線,構(gòu)造直角三角形,將問題轉(zhuǎn)化為直角三角形問題來解決 3、如圖所示,ABC是等腰直角三
28、角形,AB=AC,D是斜邊BC的中點(diǎn),E、F分別是AB、AC邊上的點(diǎn),且DEDF,若BE=12,CF=5求線段EF的長。 思路點(diǎn)撥:現(xiàn)已知BE、CF,要求EF,但這三條線段不在同一三角形中,所以關(guān)鍵是線段的轉(zhuǎn)化,根據(jù)直角三角形的特征,三角形的中線有特殊的性質(zhì),不妨先連接AD 解:連接AD 因?yàn)锽AC=90°,AB=AC 又因?yàn)锳D為ABC的中線, 所以AD=DC=DBADBC 且BAD=C=45° 因?yàn)镋DA+ADF=90° 又因?yàn)镃DF+ADF=90° 所以EDA=CDF 所以AEDCFD(ASA) 所以AE=FC=5 同理:AF=BE=12 在RtA
29、EF中,根據(jù)勾股定理得: ,所以EF=13。 總結(jié)升華:此題考查了等腰直角三角形的性質(zhì)及勾股定理等知識(shí)。通過此題,我們可以了解:當(dāng)已知的線段和所求的線段不在同一三角形中時(shí),應(yīng)通過適當(dāng)?shù)霓D(zhuǎn)化把它們放在同一直角三角形中求解。 (二)方程的思想方法 4、如圖所示,已知ABC中,C=90°,A=60°,求、的值。 思路點(diǎn)撥:由,再找出、的關(guān)系即可求出和的值。 解:在RtABC中,A=60°,B=90°-A=30°, 則,由勾股定理,得。 因?yàn)?,所以?,。 總結(jié)升華:在直角三角形中,30°的銳角的所對(duì)的直角邊是斜邊的一半。 舉一反三:【變式】
30、如圖所示,折疊矩形的一邊AD,使點(diǎn)D落在BC邊的點(diǎn)F處,已知AB=8cm,BC=10cm,求EF的長。 解:因?yàn)锳DE與AFE關(guān)于AE對(duì)稱,所以AD=AF,DE=EF。 因?yàn)樗倪呅蜛BCD是矩形,所以B=C=90°, 在RtABF中, AF=AD=BC=10cm,AB=8cm, 所以。 所以。 設(shè),則。 在RtECF中,即,解得。 即EF的長為5cm。直角三角形的性質(zhì)經(jīng)典例題透析例1:已知:如圖ABC中,BDAC,CEAB,BD、CE交于O點(diǎn),且BD=CE求證:OB=OC.分析:欲證OB=OC可證明1=2,由已知發(fā)現(xiàn),1,2均在直角三角形中,因此證明BCE與CBD全等即可證明:CEA
31、B,BDAC,則BEC=CDB=90°在RtBCE與RtCBD中RtBCERtCBD(HL)1=2,OB=OC例2:已知:RtABC中,ACB是直角,D是AB上一點(diǎn),BD=BC,過D作AB的垂線交AC于E,求證:CDBE分析:由已知可以得到DBE與BCE全等即可證明DE=EC又BD=BC,可知B、E在線段CD的中垂線上,故CDBE。證明:DEABBDE=90°,ACB=90°在RtDEB中與RtCEB中BD=BCBE=BERtDEBRtCEB(HL)DE=EC又BD=BCE、B在CD的垂直平分線上即BECD.例3:已知ABC中,CDAB于D,過D作DEAC,F(xiàn)為B
32、C中點(diǎn),過F作FGDC求證:DG=EG。分析:在RtDEC中,若能夠證明G為DC中點(diǎn)則有DG=EG因此此題轉(zhuǎn)化為證明DG與GC相等的問題,利用已知的眾多條件可以通過直角三角形的全等得到。證明:作FQBD于Q,F(xiàn)QB=90°DEACDEC=90°FGCD CDBD BD/FG,BDC=FGC=90°QF/CDQF=DG,B=GFCF為BC中點(diǎn)BF=FC在RtBQF與RtFGC中BQFFGC(AAS)QF=GC QF=DG DG=GC在RtDEC中,G為DC中點(diǎn)DG=EG例4:已知如圖,ACBC,ADBD,AD=BC,CEAB,DFAB,垂足分別是E、F求證:CE=D
33、F.分析:在RtACB與RtABD中RtACBRtBDF(HL)CAB=DBA,AC=BD在RtCAE與RtBDF中CAEBDF(AAS)CE=DF.例5:已知:如圖ABBD,CDBD,AB=DC求證:AD/BC.分析:ABBD CDBD ABD=BDC=90°在RtABD與RtCDB中ABDCDB(SAS)ADB=DBCAD/BC例6:已知,如圖5,在ABC中,BAC>90°,BD、CE分別為AC、AB上的高,F(xiàn)為BC的中點(diǎn),求證:FED=FDE。分析:因?yàn)锽D、CE分別為AC、AB上的高,所以BDC=BEC=90°。在RtBDC中DF為斜邊上中線,所以。
34、同理在RtBEC中,所以DF=EF,所以FED=FDE。例7:(2015年上海市中考題)已知:如圖6,在ABC中,AD是高,CE是中線。DC=BE,DGCE,G為垂足。求證:(1)G是CE的中點(diǎn);(2)B=2BCE。分析:(1)E是RtADB斜邊上中點(diǎn),連DE,則,所以DE=DC。又因?yàn)镈GCE,所以G為CE的中點(diǎn)。(2)因?yàn)镈E=DC,所以1=2。因?yàn)镋DB=1+2,所以EDB=22。由性質(zhì)拓展知:B=EDB,所以B=22,即B=2BCE。例8:(2015年呼和浩特市中考)如圖7,在ABC中,C=2B,D是BC上的一點(diǎn),且ADAB,點(diǎn)E是BD的中點(diǎn),連AE。求證:(1)AEC=C;(2)求證
35、:BD=2AC。分析:(1)因?yàn)锳E是RtBAD斜邊BD上中線,由性質(zhì)拓展可知:AEC=2B。又因?yàn)镃=2B,所以AEC=C。(2)由(1)AEC=C,所以AE=AC,AE是RtBAD斜邊上中線。由性質(zhì)可得:,所以,故BD=2AC。例9:(第四屆“祖沖之杯”初二競賽)如圖8,在梯形ABCD中,ABCD,A+B=90°,E、F分別是AB、CD的中點(diǎn)。求證:。分析:延長AD、BC交于G,連GE、GF。由于A+B=90°,所以G=90°。E、F分別為DC、AB中點(diǎn)。由性質(zhì)可得:。由性質(zhì)拓展可得:GDE=AGE,GAF=AGF。因?yàn)镃DAB,所以GDE=GAF,所以AGE
36、=AGF,所以G、E、F三點(diǎn)在同一直線上,所以。例10:如圖9,在四邊形ABCD中,ACBC,BDAD,且AC=BD,M、N分別是AB、DC邊上的中點(diǎn)。求證:MNDC。分析:M是RtADB與RtACB斜邊上中點(diǎn),連DM、CM,由性質(zhì)可得:,所以DMC為等腰三角形。又因?yàn)镹為CD的中點(diǎn),所以MNDC。經(jīng)典習(xí)題精講1、如圖所示,已知BEAC,DFAC,垂足分別為E,F(xiàn),O是AC與BD的交點(diǎn)且是BD的中點(diǎn),求證BE=DF。2、如圖所示,AD是ABC中BAC的平分線,ABC=2C,求證:AB+BD=AC。CABDE3、如圖所示,在ABC中,B=90,CAE和ACF的平分線相交于D,求D的度數(shù)。ABCFD4、如圖所示,在RtABC中,ACB=90,D為AB的中點(diǎn),DEBC于E,求證CDE=A。6、如圖所示,AB/CD,AD=AB=BC,DC=2AB,求證BDBC。7、在等腰三角形中,腰上的高等
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年專業(yè)高級(jí)顧問聘任協(xié)議范例版B版
- 2025年江西貨運(yùn)從業(yè)資格試題答案大全
- 建筑工程鋁扣板施工合同
- 智能城市交通網(wǎng)絡(luò)部署合同
- 會(huì)計(jì)師事務(wù)所公關(guān)部聘用合同
- 2025年正規(guī)商品代銷合同書范文
- 港口物流船運(yùn)租賃合同
- 食品公司品控員招聘合同模板
- 河北省張家口市2024屆高三上學(xué)期期末考試數(shù)學(xué)試題(解析版)
- 圖書館建設(shè)拆遷施工合同
- 微觀經(jīng)濟(jì)學(xué)(山東聯(lián)盟-山東財(cái)經(jīng)大學(xué))智慧樹知到期末考試答案2024年
- 數(shù)據(jù)可視化技術(shù)智慧樹知到期末考試答案2024年
- MOOC 警察禮儀-江蘇警官學(xué)院 中國大學(xué)慕課答案
- 三基考試題庫與答案
- 2024年廣東省2024屆高三二模英語試卷(含標(biāo)準(zhǔn)答案)
- 全飛秒激光近視手術(shù)
- 2024年制鞋工專業(yè)知識(shí)考試(重點(diǎn))題庫(含答案)
- 2023-2024學(xué)年廣州大附屬中學(xué)中考一模物理試題含解析
- 綠化養(yǎng)護(hù)工作日記錄表
- 2024美的在線測評(píng)題庫答案
- 2024版高考數(shù)學(xué)二輪復(fù)習(xí):解析幾何問題的方法技巧
評(píng)論
0/150
提交評(píng)論