版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
1、第四章第四章 跨音速定常小擾動勢流混合差分跨音速定常小擾動勢流混合差分方法及隱式近似因式分解法方法及隱式近似因式分解法chapter 4 The Mixed Finite Difference Method(FDM) for Velocity The Mixed Finite Difference Method(FDM) for Velocity Potential Function of Steady Small Perturbation and Implicit Potential Function of Steady Small Perturbation and Implicit App
2、roximate Factor Decomposition MethodsApproximate Factor Decomposition Methods主要內(nèi)容主要內(nèi)容: main contents混合差分解法混合差分解法 Mixed PD Method 小擾動方程及小擾動激波差分式小擾動方程及小擾動激波差分式 Small perturbation equation and small perturbation relationship for shock flow小擾動速勢差分方程小擾動速勢差分方程 The finite differential equation of small per
3、turbation potential function邊界條件及邊界條件的嵌入邊界條件及邊界條件的嵌入The initial condition and boundary condition線松弛迭代解法線松弛迭代解法Linear relaxation iteration method 升力翼型的跨音速小擾動勢流差分方法升力翼型的跨音速小擾動勢流差分方法FD method of velocity potential function for small perturbation隱式近似因子分解法隱式近似因子分解法Approximate factor decomposition methodA
4、F1AF1方法方法 AF1 methodAF2AF2方法方法 AF2 method 方法比較方法比較 Comparison of the method 重點重點: Focus 混合差分方法混合差分方法Mixed FD Method 難點:難點: Difficulty隱式近似因子分解法隱式近似因子分解法Implicit Approximate factory decomposition第四章第四章 跨音速定常小擾動勢流混合差分方法及隱跨音速定常小擾動勢流混合差分方法及隱式近似因式分解法式近似因式分解法chapter 4 The Mixed Finite Difference Method for
5、 chapter 4 The Mixed Finite Difference Method for Velocity Potential Function of Steady Small Velocity Potential Function of Steady Small Perturbation and Implicit Approximate Factor Perturbation and Implicit Approximate Factor Decomposition MethodsDecomposition Methodsu跨音速流:局部超音區(qū)與亞音速同時存在的流場跨音速流:局部超
6、音區(qū)與亞音速同時存在的流場 Transonic flow :Local supersonic flow and supersonic flow exists meantime u偏微分方程:混合型方程偏微分方程:混合型方程 The PDE:Mixed type equationu混合差分方法:用不同的差分方程求解跨聲速流場混合差分方法:用不同的差分方程求解跨聲速流場 Mixed Finite difference method is to solve transonic flow with different FDMsu混合型方程及流場:采用迭代方法求解,求解之前不知道方程的類型混合型方程及流
7、場:采用迭代方法求解,求解之前不知道方程的類型 Mixed Equation and flow field, the iterative method is used because the type of the equation is unknown before it was solvedu小擾動方程:小馬赫(小擾動方程:小馬赫(0.61.40.61.4)流過薄而微變的葉片(機翼或葉柵)時)流過薄而微變的葉片(機翼或葉柵)時全速勢方程可簡化為小擾動方程全速勢方程可簡化為小擾動方程 Small perturbation equation(SPE): when mach number is
8、small (ie 0.61.4)the full velocity potential equation can be simplified to SPEu混合差分混合差分: :用混合差分格式求解小擾動方程用混合差分格式求解小擾動方程 Mixed FDM :To solve equation using MFDMu混合差分和松弛迭代法求解全速勢方程混合差分和松弛迭代法求解全速勢方程 Mixed FDM and Relaxation iteration : To solve full velocity potential equation.u優(yōu)缺點:優(yōu)缺點: Advantage/disadva
9、ntage 跨音速松弛法跨音速松弛法-速度快,有效速度快,有效 Transonic relaxation method faster efficient 時間推進法:適用范圍廣時間推進法:適用范圍廣 Time matching methods, widely usage 近似因子分解法:快速近似因子分解法:快速 Approximate factor decomposition:faster 多層網(wǎng)格法:收斂性好多層網(wǎng)格法:收斂性好 Multi-grid technique:good convergence4.1 4.1 跨聲速小擾動速度勢方程跨聲速小擾動速度勢方程 Equation of tr
10、ansonic small perturbation velocity potential function 跨聲速氣流繞過薄翼的情況跨聲速氣流繞過薄翼的情況 For the case of transonic flow pass a thin airfoill二維平面速勢方程二維平面速勢方程 2D velocity potential equation 22222222()()201()2xxxyxyxyaVaVV VraaVV其中氣流繞過薄翼氣流繞過薄翼v適用范圍:適用范圍:亞、跨、超音速無旋流動亞、跨、超音速無旋流動 Suitable Suitable casecase :subsoni
11、csubsonic, transonictransonic, supersonicsupersonic irr-irr-rotationalrotational flow.flow.將流動分解為兩部分:未經(jīng)擾動的流動、擾動流動將流動分解為兩部分:未經(jīng)擾動的流動、擾動流動ToTo decompose the flow into unperturbed flow anddecompose the flow into unperturbed flow and perturbperturb flowflowl未經(jīng)擾動的流動就是無窮遠前方來流未經(jīng)擾動的流動就是無窮遠前方來流FlowFlow at at
12、unperturbed fields is far field flow unperturbed fields is far field flow l擾動運動速度勢可以用擾動運動速度勢可以用 表示。速度可以用表示。速度可以用 表示表示 Potential function of perturbation flow Potential function of perturbation flow isis ,perturbation velocity componentsperturbation velocity componentsyxVV ,yxVV ,yyxxyxVVyxVVVVV,)sin
13、cos(sincos兩部分的合速度勢兩部分的合速度勢 The total velocity potential function)sincos(yxV代入速勢方程可得小擾動速度代入速勢方程可得小擾動速度 應(yīng)滿足的方程應(yīng)滿足的方程 Substitute the equation and then the small perturbation eq.02)()(2222xyyxyyyxxxVVVaVa求得速度場之后,可以得到壓強及壓強系數(shù)為求得速度場之后,可以得到壓強及壓強系數(shù)為 The pressure and pressure coefficient can be obtained from
14、the following equations. )2(222vvpp) 1(221)(222pprMvpppcp再用等熵流動的關(guān)系式可得到其他參數(shù)再用等熵流動的關(guān)系式可得到其他參數(shù) Then introduce the isentropy relation to get other parameters1)(TTpp2sincos) 1(12222VVVVVVMTTyxyx 1)2sincos() 1(12122222vvvMrMcpyxyyxp比熱比絕熱指數(shù)小擾動條件下,擾動速度遠小于自由來流速度小擾動條件下,擾動速度遠小于自由來流速度 on small perturbation cond
15、ition, the perturbation velocity less than free streamVVVyx,xVVVa22xVVa2補充條件:補充條件: Supplement conditions來流不能接近音速 incoming flow velocity does not approach sonic 來流非高超聲速 incoming flow velocity does not approach hypersonic為進一步簡化擾動方程,忽略擾動速度一次項,可得到為進一步簡化擾動方程,忽略擾動速度一次項,可得到下列關(guān)系:下列關(guān)系:Simplified equation0222
16、2222yxyxVVaVaVaVa最后得到最后得到: Final equation0)1 (0)(2222yyxxyyxxMaVa應(yīng)用范圍應(yīng)用范圍: 亞、超聲速亞、超聲速 Suitable for subsonic and supersonic不適用于跨聲速區(qū)域不適用于跨聲速區(qū)域:對于跨聲速對于跨聲速 1,必須取消補充假設(shè)條件,必須取消補充假設(shè)條件,即取消來流不能接,即取消來流不能接近音速的假設(shè),這時速勢方程首項的系數(shù)一次項不能忽略近音速的假設(shè),這時速勢方程首項的系數(shù)一次項不能忽略 For transonic flow field (M 1), the supplement condition
17、, the first item of the potential function equation can not be neglected. xvvvava) 1(2222M跨聲速小擾動方程應(yīng)為:跨聲速小擾動方程應(yīng)為:The small perturbation equation of velocity function011 0) 1(22222yyxxxxyxxxMvMaVVval可以證明:當(dāng)可以證明:當(dāng)M M11時,時, Its proved ,when M1,222111 MMvMx因此跨聲速條件下,小擾動方程可以寫成因此跨聲速條件下,小擾動方程可以寫成 So that the
18、small perturbation equation at transonic flow can be written as0)1 (2yyxxM此方程的類型取決于此方程的類型取決于: Type of the equation depends on = =B B2 2-4AC=4(M-4AC=4(M2 2-1)-1)當(dāng)當(dāng)M1M1時時, , 0,0,不存在實特征根,沒有特征線,為橢圓型不存在實特征根,沒有特征線,為橢圓型 When M1M1時時, , 0,0,存在兩個特征根,有兩條特征線,為雙曲型存在兩個特征根,有兩條特征線,為雙曲型 When M1,there are two eigenva
19、lue, two character lines, the equ. is hyperbolic eq.當(dāng)當(dāng)M=1M=1時時, , =0,=0,存在一個特征根,有一條特征線,為拋物型存在一個特征根,有一條特征線,為拋物型When M=1,there is one eigenvalue, one characteristic line ,the equ. is parabolic 特征線特征線( (當(dāng)當(dāng)M1M1時時) ):斜率:斜率 The slope of characteristic line MtgMdxdy1sin11)(12特征線與特征線與x x軸夾角為局部馬赫角,對稱于軸夾角為局部馬
20、赫角,對稱于x x軸。軸。 Local Mach angle is the angle between velocity vector and the characteristic linexyoqrpqr影響區(qū)依賴區(qū) 是馬赫角是馬赫角 is so call Mach angleis so call Mach angle 影響區(qū):影響區(qū):P P點下游由兩條特征線所夾的區(qū)域點下游由兩條特征線所夾的區(qū)域 Influence zone: upwind zone between characteristic lines依賴區(qū):依賴區(qū): P P點上游由兩條特征線所夾的區(qū)域點上游由兩條特征線所夾的區(qū)域 D
21、epend zone downstream zone between the characteristic lines擾動下的壓強系數(shù)公式擾動下的壓強系數(shù)公式 The pressure coefficient on small perturbation conditionVVVpxx24-24-2小擾動激波關(guān)系式小擾動激波關(guān)系式 The shock relations The shock relations of small perturbation .of small perturbation . 等熵激波小擾動激波的熵增是三階小量等熵激波小擾動激波的熵增是三階小量 For small pe
22、rturbation shock, entropy increase is third order, so it is isentropy shock。l 激波的精確速度關(guān)系式:激波的精確速度關(guān)系式:Accurate velocity relation of shock22121221212212)(CrxCrxxyaVVVaVVVVV激波前后的速度關(guān)系式(幾何關(guān)系)激波前后的速度關(guān)系式(幾何關(guān)系) Velocity relations in front/rear-shock 2121VVVVx212212122122)(VVVVVVVyy22221221)()(yxVVVVV22221221
23、)()(yxVVVVV即即 對于直角坐標(biāo)系對于直角坐標(biāo)系 At Cartesian coordinates2112221Vsin2VVcos21yyxxxVVVVV)(VVcos22221xxyVoVV)()VV(2121221xxxxVoVVVV)()VV(3122122xyyyVoV)()()(31221221xxxxVoVVVVjViVVyxVsinVcos 因此因此 so thatso thatl由能量方程可得由能量方程可得 From energy equationl由此得到由此得到 M M11時的方程(跨聲速中)時的方程(跨聲速中)FromFrom where , the equat
24、ion when M1,(transonic flow)l超聲速中超聲速中 At supersonic flow22222112VMMVacr0)()(211 (2212212122yyxxxxVVVVVVMVM0)()(21_1 (221221212yyxxxxvvvvvvMVrMl適用范圍:適用范圍:激波前后小擾動方程,適用于等熵波激波前后小擾動方程,適用于等熵波 Above eqs. are available for small perturbation flow in front/behind of the shock, i.e. , iso-entropy flow4-3 4-3
25、跨聲速小擾動速勢差分方程跨聲速小擾動速勢差分方程 Small perturbation equation for transonic flow 混合性方程,在同一流場中不同點所用的差分方程混合性方程,在同一流場中不同點所用的差分方程 不同。不同。 Mixed equation, different FDE is used for the scheme一、中心差分格式一、中心差分格式 Centeral FDE scheme flow field 對速度勢對速度勢 For velocity potential function ! 2)(),(),(222xxxxyxyxx! 2)(),(),(2
26、22xxxxyxyxxl一階導(dǎo)數(shù)的差分格式一階導(dǎo)數(shù)的差分格式 First order difference equation is obtained as 2)(2),(),(xoxyxxyxxxl二階導(dǎo)數(shù)的差分格式二階導(dǎo)數(shù)的差分格式 Plus two equations, and get 2ed order PD2222)()(),(),(2),(xoxyxxyxyxxx二階精度二階精度 2nd orderC在超音速流中,氣流參數(shù)只受上擾動游影響與下游擾動無關(guān)。在超音速流中,氣流參數(shù)只受上擾動游影響與下游擾動無關(guān)。At At supersonic flow, the parameters o
27、f flow are dependent on upwind supersonic flow, the parameters of flow are dependent on upwind perturbation and independent on down flow perturbationperturbation and independent on down flow perturbationC需建立迎風(fēng)一側(cè)差分格式需建立迎風(fēng)一側(cè)差分格式 The upwind one side FD scheme is The upwind one side FD scheme is needed
28、to builtneeded to built C取上游一側(cè)的點構(gòu)成差分格式取上游一側(cè)的點構(gòu)成差分格式 Take the upwind point to Take the upwind point to construct FD schemeconstruct FD scheme一階精度迎風(fēng)格式一階精度迎風(fēng)格式 1st order upwind scheme二階精度迎風(fēng)格式二階精度迎風(fēng)格式 2nd order upwind scheme2(, )()xx yoxxx(x,y)- 222(2 , ) 2 (, )( )()xx yxx yxo xxx 二、一側(cè)差分格式二、一側(cè)差分格式 One s
29、ide FDE of the derivatives2,xx y ,xx y ,xx y, x yxyv三、亞音速點的差分方程三、亞音速點的差分方程At subsonic flow equation 取網(wǎng)格點如圖:正交等間距網(wǎng)格取網(wǎng)格點如圖:正交等間距網(wǎng)格The space nodes are shown as 中心差分格式構(gòu)成的差分方程中心差分格式構(gòu)成的差分方程1,1,1,1,1,122222211.02ijijiji jiji ji ji jrMMVxxy1,1,1,1,1,12222,1,1,22211212212ijijijiji ji ji jijijrMMVxxyrMVxxy 即即
30、 受周圍四點的影響,這是亞聲速流動的特點受周圍四點的影響,這是亞聲速流動的特點 is effect by around four points , this is subsonic feature , i j, i j1j j1j 1i i1i 四、超聲速點的差分方程四、超聲速點的差分方程FDE for supersonic flow 當(dāng)計算點為超音速(當(dāng)計算點為超音速(M M大于大于1 1)時,方程為雙曲線型)時,方程為雙曲線型When local supersonic flow appear ,the equation is hyperbolic存在依賴區(qū)(上游馬赫錐內(nèi)部)存在依賴區(qū)(上游
31、馬赫錐內(nèi)部)The dependence zone exists ,(up mach core)對對y y的差分可以用中心格式的差分可以用中心格式The centurial difference is used for the derivative with sped to y對對x x的差分要用迎風(fēng)格式的差分要用迎風(fēng)格式Upwind scheme is used for X-direction顯示格式:顯示格式: 差分式取差分式取 ,而不用,而不用 線法線法Explicit scheme每次都用每次都用i i網(wǎng)格線上的已知值,可以從左到右逐點網(wǎng)格線上的已知值,可以從左到右逐點計算計算The
32、known value is used to calculate the value at every node sequentlyyy1i i1,11,1,122ijijijyyy隱式格式:利用當(dāng)前網(wǎng)格線上的值構(gòu)筑差分方程隱式格式:利用當(dāng)前網(wǎng)格線上的值構(gòu)筑差分方程Implicit scheme : using present value to construct FDE 具有三個未知量(在網(wǎng)格線具有三個未知量(在網(wǎng)格線i i上上) Where there are 3 unknown points,1,.122i ji ji jyyy顯式比隱式方便顯式比隱式方便Explicitly schem
33、e is more convenient than implicit scheme顯式格式穩(wěn)定區(qū)域小顯式格式穩(wěn)定區(qū)域小The stability zone of explicit is smaller than that of implicitlyu穩(wěn)定性和收斂性穩(wěn)定性和收斂性 Stability and convergence收斂性:當(dāng)步長趨于零時,差分方程解趨于微分方收斂性:當(dāng)步長趨于零時,差分方程解趨于微分方程解程解Convergence: when step length tends to zero, the solution of the PDF tends to the solut
34、ion of PDE穩(wěn)定性:差分誤差在傳播過程中有界且逐漸減小穩(wěn)定性:差分誤差在傳播過程中有界且逐漸減小Stability :the error is limited or decreased對波動方程(雙曲型):穩(wěn)定性條件是差分方程依賴對波動方程(雙曲型):穩(wěn)定性條件是差分方程依賴區(qū)不小于微分方程的依賴區(qū)區(qū)不小于微分方程的依賴區(qū)For viberation Eq ,the stability condition is that the dependent zone of PDE less than that of PDEu對超聲速勢函數(shù)對超聲速勢函數(shù) For potential veloci
35、ty fuction 差分方程依賴區(qū)半頂角差分方程依賴區(qū)半頂角 The half conical angle The The half conical angle The dependent zone of the FDEdependent zone of the FDEytgxxy微分方程的半頂角微分方程的半頂角the angle of the dependent zone 差分方程穩(wěn)定條件為差分方程穩(wěn)定條件為u對于跨聲速勢流,不滿足穩(wěn)定條件,因為對于跨聲速勢流,不滿足穩(wěn)定條件,因為For transonic flow, the stability condition is not sati
36、sfied211tgM211ytgtgxM21,1yxM 跨聲速勢流不能用顯示格式跨聲速勢流不能用顯示格式 so transonic potential function can not solve with explicit methodn隱式格式的依賴范圍大于微分方程的依賴范圍隱式格式的依賴范圍大于微分方程的依賴范圍The dependent zone of implicit scheme is great than that of PEDJ+1JJ-111221Mtg雙曲方程差分采用一側(cè)隱式格式雙曲方程差分采用一側(cè)隱式格式For hyperbolic equation ,one side
37、 implicitly scheme is used五、音速點的差分方程五、音速點的差分方程The finite diffence at sonic points 當(dāng)當(dāng)M=1時,方程為拋物性,存在一族特征線時,方程為拋物性,存在一族特征線When M=1,the equation is parabolic, there exist a series of characterist line 速度勢方程化為速度勢方程化為potential equation become ,2,1,2,1,1222222r+1102i jiji jijiji ji ji jMMVxxycyx 0yySubsoni
38、c 采用差分方程可以寫成采用差分方程可以寫成Using FDE六、速度判別式六、速度判別式Velocity critical condition 四種情況四種情況: Four cases 亞聲速sub 亞聲速sub 超聲速supe 超聲速super 亞聲速sub 超聲速super 超聲速 super 亞聲速subsupersupersonicairfoil,1,120i ji ji j1M :過渡連續(xù):過渡連續(xù) continually changes :出現(xiàn)激波:出現(xiàn)激波 參數(shù)不連續(xù)參數(shù)不連續(xù) the shock appears, parameters are discontinous :有音
39、速線存在:有音速線存在There exists sonic points逐點判別:逐點判別:根據(jù)根據(jù) 系數(shù)進行判別系數(shù)進行判別Judge according to the coefficient ofxx0 xxyyAC情況 的值 的值00亞-亞聲速subsonic0 0 0亞-超聲速sonic0超-亞聲速subsonic中心差分中心差分一側(cè)差分一側(cè)差分 11,1,22ir+112ijijAMMVx 2,2,22i-1r+112i jijAMMVx 1A 2AA (i,j)點性質(zhì)對應(yīng)的差分方程any亞音速subsonic超音速supersonic音速點sonic00001,1,1,1,222,
40、1,122r+1122ijijiji jiji ji ji jMMVxxx,2,1,2,222,1,122r+11220yi jiji jijiji ji ji jMMVxx,1,120i ji ji j差分方程形式差分方程形式 PDE form七七. .跨聲速小擾動激波的差分方程跨聲速小擾動激波的差分方程 PDE for transonic small perturbation shock flow v激波處:速度由超聲速過渡到亞聲速激波處:速度由超聲速過渡到亞聲速 At shock, the flow transfer from supersonic to subsonic激波前流場均勻(
41、近似)激波前流場均勻(近似) In front of the shock ,the flow is uniform supersonic flow1,1,()xi jijV1,1,()yi ji jxVyi,ji-1ii+1j+1i-1ji,j+1i+1,j+1i+1,ji-1shock激波后流場均勻(近似)激波后流場均勻(近似) After the shock ,the flow is also uniform差分方程(跨聲速小擾動方程的差分形式)差分方程(跨聲速小擾動方程的差分形式) FDE (Transonic small perturbation flow)21,()xiji jV2,
42、1()yi ji jxVy212221211(1)02yyxxxxVVVVVVrMMVxy對無旋流動(無旋條件)對無旋流動(無旋條件) Condition of irrotational flow 其差分形式其差分形式 Its FD form yxVVyx212122yyxxVVVVyx考慮了無旋條件的擾動速度差分方程考慮了無旋條件的擾動速度差分方程 After considering the irrotatational condition the small perturbation equation becomesv討論:討論:discussion: 跨聲速區(qū)小擾動激波差分方程與小擾動激
43、波關(guān)系相同跨聲速區(qū)小擾動激波差分方程與小擾動激波關(guān)系相同22221221121(1)()()02xxxxyyVVrMMVVVVV八、超音速點差分方程的人工粘性八、超音速點差分方程的人工粘性 artificial viscous for supersonic FDE速勢方法假設(shè)了流場均為等熵流速勢方法假設(shè)了流場均為等熵流 The velocity potential method assume that the flow is iso-entropy導(dǎo)致流場間斷解不唯一(可由亞導(dǎo)致流場間斷解不唯一(可由亞-超,也可由超超,也可由超-亞)亞) It leads to non-unique solu
44、tion如果采用迎風(fēng)格式如果采用迎風(fēng)格式 (單側(cè)差分),則只適合壓縮突躍(由(單側(cè)差分),則只適合壓縮突躍(由超超-亞),不可能出現(xiàn)膨脹解。亞),不可能出現(xiàn)膨脹解。 Continuous solution,if the upwind scheme is used, the solution only suitable for compressible sharp increase (shock), not suitable for sharp decrease.)(22, 2,xoxxxxjijix)()(22, 2, 1xxxxxxjijiijxx超聲速點差分方程(迎風(fēng)格式)超聲速點差分方程
45、(迎風(fēng)格式) FDE of the potential equation at supersonic flow),(1)1 ()1 ()(2)2()211 (22222221,1,2, 2, 1, 2,22yxxMvxMMyxxMvMxxxxxyyxxjijijijijijijiji&原因:原因:采用采用1階迎風(fēng)格式階迎風(fēng)格式 1st order upwind scheme應(yīng)用當(dāng)?shù)貞?yīng)用當(dāng)?shù)豈數(shù)改成相對應(yīng)的微分方程數(shù)改成相對應(yīng)的微分方程 Using local Mach number M to rewrite the PDE then 其中其中 類似于跨音速小擾動粘性流方程中的粘類似于跨
46、音速小擾動粘性流方程中的粘 性項。稱為人工粘性性項。稱為人工粘性 Where is similar as the viscous form of small pertubation equation, so called it artificial viscous差分方程的解只含壓縮突躍,即激波(是熵增過程)差分方程的解只含壓縮突躍,即激波(是熵增過程) PDE only includes compressed shape change(where the entropy creases ) 不可能產(chǎn)生膨脹突躍(即熵減過程)不可能產(chǎn)生膨脹突躍(即熵減過程) Not suitable for e
47、xpanding shape change(where entropy decreases)22221(1)(1)xxyyxxxxxMMxMxv 2(1)xxxMx2(1)xxxMx4.4 邊界條件及其嵌入邊界條件及其嵌入 Embeding of Boundary conditions一、邊界條件一、邊界條件(Boundary Condition)1.物面:物面: 無粘,無穿透條件無粘,無穿透條件 on wall no normal velocity 對于翼型(葉柵),設(shè)物面方程為對于翼型(葉柵),設(shè)物面方程為, 則定常則定常流動邊界條件流動邊界條件0V n ( , )0F x y 0VF 0
48、 xyFFVVxy即:若翼型上下表面可表示為若翼型上下表面可表示為 則則速度分量可寫成速度分量可寫成 ( )yfx( , )( )0F x yyyx,0FyFxxy cosxxVVvcosyyVVv上表面的邊界條件為上表面的邊界條件為 BC on up surface isy(cos)sin0yVvVVx上上其中,其中, , 為擾動速度為擾動速度 Where , is the perturbation velocity componentsyvxvxvyvxyvvV,對于薄翼型對于薄翼型 For thin wing小迎角下,小迎角下, 時時 For small AOA, when 故上表面故上
49、表面 (on up surface)或?qū)懗苫驅(qū)懗?or be written as sin,co0c0,0yyxVx上1x上y()xyyyvV上同理,對于下表面同理,對于下表面 meantime for lower side,0yyxVx下v綜合上下表面可以寫成以下小擾動方程翼型上下表面邊綜合上下表面可以寫成以下小擾動方程翼型上下表面邊界條件界條件Consider upper and lower side of airfoil ,the small perturbations satisfy following condition,0yyxVx2.庫塔條件(后緣邊界條件)庫塔條件(后緣邊界條件
50、) Kutta condition (trailing edge condition )上下表面流線在后緣尖點平滑匯合上下表面流線在后緣尖點平滑匯合 the streamlines on upside and Lower-side smoothly sinks at trailing edge在受氣動載荷時,速度勢在后緣不連續(xù),形成間斷面。在受氣動載荷時,速度勢在后緣不連續(xù),形成間斷面。Under the aerodynamic loads ,velocity potential function at tracting edge is discontinuous 在這條間斷面上必須滿足在這條
51、間斷面上必須滿足 On the discontinuity surface,what must satisfy is 。后上下c (1)(1)上下壓強相等上下壓強相等 the pressure on up and lower side of airfoil is equal (2)(2)速度方向相同,大小不同速度方向相同,大小不同 the direction of velocity are consistent, but the value of the velocity is not equal l小擾動條件下小擾動條件下 ,因此上述方程,因此上述方程可寫成:可寫成: for small p
52、erturbation, above equations can be written as: ( , 0)( , 0)( , 0)( , 0)( , 0)( , 0)yyxxP xP xVxVxVxVx2xVPV( , 0)( , 0)( , 0)( , 0)xxyyxxxxl經(jīng)間斷面速度勢變化稱為環(huán)量經(jīng)間斷面速度勢變化稱為環(huán)量 through the section surface the velocity potential function changes is circulation.3.3.遠場條件遠場條件Far field condition l用有限遠代替無限遠場,擾動速度勢的
53、近似條件為:用有限遠代替無限遠場,擾動速度勢的近似條件為: using limited far field replace the real far field perturbation velocity potential function BC can be written as:)0-(-)0(,后后xxdc00yyxxvv二、邊界條件的嵌入二、邊界條件的嵌入 Embeding of the boundary condition 邊界點上速度勢應(yīng)同時滿足邊界條件和速勢方程邊界點上速度勢應(yīng)同時滿足邊界條件和速勢方程On boundary the velocity potential fun
54、ction satisfy both the BC and the potential Eq.1.1.物面邊界嵌入物面邊界嵌入 Embeding of wall boundary condition翼型上表面翼型上表面 On the airfoil surface 將速勢拓延到邊界的另一側(cè)(將速勢拓延到邊界的另一側(cè)(i i,j-1j-1) Extend the velocity potential function to other side of boundary,()()yi jyVx上)(2)(21,1,yyjijijiy即即Or)()(23,1,1,yyjiyjiji邊界點的中心差分邊
55、界點的中心差分The central difference on boundary)()(2)(221,1,yyjijijijiy利用邊界條件得到:利用邊界條件得到:Using BC then get)()(2)(,1,jjiyjjijijjiyyyyy,1,2()()i ji jjjjyVyyyx 上2.2.庫塔條件的嵌入庫塔條件的嵌入 Embedding of Kutta condition增加新方程使上下表面上增加新方程使上下表面上 相同,即相同,即Additional new equation to make consistent on up and lower surface)0,(
56、)0,()0,()0,(后后xxxxyy( , 0)( , 0)yyxx,()()yi jyVx上3.3.遠場條件的嵌入遠場條件的嵌入 Embedding of far field condition根據(jù)具體問題特點建立運動場根據(jù)具體問題特點建立運動場 的計算方法的計算方法To found the computation method according to the character of certain problem對于自由繞流,運動速度為對于自由繞流,運動速度為 ,自由來流的速度勢,自由來流的速度勢為為 for a free flow around the airfoil, the
57、far field velocity is ,and the velocity potential function of free flow isvvsinvcosvyx擾動速度勢應(yīng)滿足擾動速度勢應(yīng)滿足Therefore the perturbation velocity potential satisfy0)(200)(201,1, 1, 1xvxvjijiyyjijixx4.5 4.5 線松弛迭代解法線松弛迭代解法The line relaxation iteration method一、非線性代數(shù)方程的迭代解法一、非線性代數(shù)方程的迭代解法 Iterative method for no
58、n-linear equationsl跨聲速小擾動速勢方程是非線性的跨聲速小擾動速勢方程是非線性的 Transonic small perturbation equation is nonlinear PDEl其差分方程為非線性代數(shù)方程,即系數(shù)是與函數(shù)值或其導(dǎo)數(shù)有關(guān)其差分方程為非線性代數(shù)方程,即系數(shù)是與函數(shù)值或其導(dǎo)數(shù)有關(guān)Its FDE is also nonlinear equation that is its coefficients are related to the variablesl迭代求解:迭代求解: Iteration method 把系數(shù)假設(shè)成已知量,每次求解之后再重新計算系
59、數(shù)把系數(shù)假設(shè)成已知量,每次求解之后再重新計算系數(shù),再次求再次求解直到得出收斂解為止解直到得出收斂解為止.Assume the coefficient are known at first iteration, then recalculate the coefficients again after once iteration, repeat iteration until the iteration convergences二、高階代數(shù)方程的線松弛解法二、高階代數(shù)方程的線松弛解法 The line relaxation iteration method for High order ari
60、thmetic linear equations l 高階線性方程組,線性化后的差分方程高階線性方程組,線性化后的差分方程 High order linear equations, linearized FDEl 階數(shù)為階數(shù)為 , M為網(wǎng)格點數(shù)為網(wǎng)格點數(shù), n為問題的維數(shù)為問題的維數(shù). 或階數(shù)或階數(shù)M*N*L(M,N,L為空間三坐標(biāo)方向的網(wǎng)格點數(shù))為空間三坐標(biāo)方向的網(wǎng)格點數(shù)) The order of linear-algebra equation is , where M is the number of the grids, n is the number of dimension. The or
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 校務(wù)工作總結(jié)10篇
- 考研思想政治理論(101)研究生考試試卷與參考答案
- 幼兒園感謝信范文集錦10篇
- 個人月度工作計劃模板
- 2024年版環(huán)境保護工程分包商責(zé)任明確合同版B版
- 教師愛崗敬業(yè)演講稿范文錦集7篇
- 競聘銀行主任演講稿模板3篇
- 護士節(jié)活動策劃匯編15篇
- DB45T 2598-2022 大果山楂原醋生產(chǎn)技術(shù)規(guī)程
- DB45T 2501-2022 甘蔗種植自動氣象觀測站選址及安裝規(guī)范
- 解讀ASTMG154熒光紫外測試條件和要求
- 基層醫(yī)療機構(gòu)醫(yī)療廢物污水管理共35張課件
- 高低壓開關(guān)柜技術(shù)方案
- 四年級上冊語文選擇正確讀音名校專項習(xí)題含答案
- [北京]輸變電工程標(biāo)準工藝應(yīng)用圖冊(圖文并茂)
- 高中學(xué)生英語寫作能力培養(yǎng)研究課題實施方案
- 部編版小學(xué)語文一年級上冊期末復(fù)習(xí)計劃
- 大貓英語分級閱讀 三級1 How to Have a Party 課件
- 常用焊接英語詞匯大全
- 數(shù)控技術(shù)專業(yè)實踐教學(xué)體系
- 福伊特液力變矩器的結(jié)構(gòu)及工作原理的使用
評論
0/150
提交評論