注冊電氣工程師基礎(chǔ)考試視頻課程筆記(V)_第1頁
注冊電氣工程師基礎(chǔ)考試視頻課程筆記(V)_第2頁
注冊電氣工程師基礎(chǔ)考試視頻課程筆記(V)_第3頁
注冊電氣工程師基礎(chǔ)考試視頻課程筆記(V)_第4頁
注冊電氣工程師基礎(chǔ)考試視頻課程筆記(V)_第5頁
免費(fèi)預(yù)覽已結(jié)束,剩余1頁可下載查看

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

1、3 極限運(yùn)算法則 ( l ) (極限的四則運(yùn)算法則)注意:上述記號“ lim ”下的自變量變化過程可以是、,但等號兩端出現(xiàn)的必需是同一種。( 3 ) (復(fù)合函數(shù)的極限運(yùn)算法則)設(shè)函數(shù) y = fg ( x )是由函數(shù) y = f ( u)與函數(shù)u = g ( x)復(fù)合而成, f g (x) 在點(diǎn) x0 的某去心領(lǐng)域內(nèi)有定義,若,且存在當(dāng)時,有 ,則(二)極限存在準(zhǔn)則和兩個重要極限1 夾逼準(zhǔn)則和極限準(zhǔn)則I(數(shù)列情形)若數(shù)列且xn、yn、及zn滿足條件: (n= 1 , 2 , 3 ,)且則數(shù)列xn的極限存在且 準(zhǔn)則I(函數(shù)情形)若函數(shù) f ( x )、 g ( x )及 h ( x )滿足條件:

2、利用準(zhǔn)則I,可得一個重要極限2 單調(diào)有界準(zhǔn)則和極限準(zhǔn)則II 單調(diào)有界的數(shù)列(或函數(shù))必有極限。利用準(zhǔn)則II,可得另一個重要極限其中 e 是一個無理數(shù), e =2 . 71828 (三)無窮小的比較設(shè) a 及都是在同一個自變量變化過程中的無窮小,且0, lim 也是在這個變化過程中的極限。若 lim =0,就稱是比a高階的無窮小,記作=(a);并稱a是比低階的無窮小;若 lim =C 0,就稱是與 a 同階的無窮?。蝗?lim =1, 就稱是與 a 等階的無窮小,記作a 。關(guān)于等價無窮小,有以下性質(zhì):若,且 lim 存在,則當(dāng) x 0時,有以下常用的等價無窮?。海ㄋ模├}一般地,對有理分式函數(shù)其

3、中P( x )、 Q ( x )是多項(xiàng)式, 若(x)=Q(x0) 0,則注意:若 Q ( x 0) = 0 ,則關(guān)于商的極限運(yùn)算法則不能應(yīng)用,需特殊考慮。【例1-2-2】 求 【 解 】 (x2- 9 ) = 0 ,不能應(yīng)用商的極限運(yùn)算法則。但分子、分母有公因子x-3,故【例1-2-3】 。【 解 】 ( x2-5x+4)=0, (2x-3)= -1,故從而【例 l -2 -4】 求。【 解 】 當(dāng) x 時,分子、分母都為無窮大,不能應(yīng)用商的極限運(yùn)算法則,但可先用 x3 去除分子、分母,故【例1-2-5】 等于( A ) 1 ( B ) 0 ( C )不存在且不是 ( D ) 【解】 由于=0

4、,按照“有界函數(shù)與無窮小的乘積是無窮小”,故應(yīng)選(B), 注意不要與極限=1相混淆?!纠?-2-6】 求?!纠?-2-7】 求?!?解 】 令 x- t ,則當(dāng) x 時,t 。于是【例1-2-8】 求?!纠?-2-9】 求。【解】當(dāng) x 0 時,tan2x 2x, sin5x 5x,所以【例1-2-10】 求。【解】 當(dāng) x 0時,,cosx-1-,所以【例1-2-11】 等于( A )2 ( B ) 0 ( C ) ( D )不存在且不是 【解】 因?yàn)樗?故極限不存在,且不是 ,應(yīng)選( D )?!?例 1 -2- 12 】 設(shè)f( x ) = 2x 3 x -2 ,則當(dāng) x 0 時,有(

5、A ) f ( x ) 與 x 是等價無窮小 ( B ) f ( x )與 x 同階但非等價無窮小 ( C ) f ( x )是比 x 高階的無窮小 (D)f ( x )是比 x 低階的無窮小【解】 所以應(yīng)選( B )。【 例 1 -2 -13 】 當(dāng) x 0 時, tanx sinx 是x3的 ( A )高階無窮小 ( B )低階無窮?。?C )同階但非等價無窮小 ( D )等價無窮小【解】應(yīng)選( C )。注意:當(dāng) x 0時, tanx x ,sinx x ,但不能得出 tanx - sinx x - x = 0 ,從而得出上述極限為零,而選( A )。事實(shí)上,上面的計(jì)算結(jié)果表明 tanx- sinx。由此可知,在利用等價無窮小求極限時,不能對分子或分母中的某個加項(xiàng)作代換,而應(yīng)該對分子或分母的整體,或其中的無窮小的因子作等價代換,才不

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論