




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、3.1.3 概率的基本性質(zhì)整體設(shè)計(jì)教學(xué)分析 教科書通過擲骰子試驗(yàn),定義了許多事件,及其事件之間的關(guān)系,事件的包含、并事件、交事件、相等事件,以及互斥事件、對(duì)立事件的概念. 教科書通過類比頻率的性質(zhì),利用頻率與概率的關(guān)系得到了概率的幾個(gè)基本性質(zhì),要注意這里的推導(dǎo)并不是嚴(yán)格的數(shù)學(xué)證明,僅僅是形式上的一種解釋,因?yàn)轭l率穩(wěn)定在概率附近僅僅是一種描述,沒有給出嚴(yán)格的定義,嚴(yán)格的定義,要到大學(xué)里的概率統(tǒng)計(jì)課程中才能給出.三維目標(biāo)(1)正確理解事件的包含、并事件、交事件、相等事件,以及互斥事件、對(duì)立事件的概念;通過事件的關(guān)系、運(yùn)算與集合的關(guān)系、運(yùn)算進(jìn)行類比學(xué)習(xí),培養(yǎng)學(xué)生的類比與歸納的數(shù)學(xué)思想.(2)概率的幾
2、個(gè)基本性質(zhì):必然事件概率為1,不可能事件概率為0,因此0P(A)1;當(dāng)事件A與B互斥時(shí),滿足加法公式:P(AB)=P(A)+P(B);若事件A與B為對(duì)立事件,則AB為必然事件,所以P(AB)=P(A)+P(B)=1,于是有P(A)=1-P(B).(3)正確理解和事件與積事件,以及互斥事件與對(duì)立事件的區(qū)別與聯(lián)系,通過數(shù)學(xué)活動(dòng),了解數(shù)學(xué)與實(shí)際生活的密切聯(lián)系,感受數(shù)學(xué)知識(shí)應(yīng)用于現(xiàn)實(shí)世界的具體情境,從而激發(fā)學(xué)習(xí)數(shù)學(xué)的情趣.重點(diǎn)難點(diǎn)教學(xué)重點(diǎn):概率的加法公式及其應(yīng)用.教學(xué)難點(diǎn):事件的關(guān)系與運(yùn)算.課時(shí)安排 1課時(shí)教學(xué)過程導(dǎo)入新課思路1 體育考試的成績(jī)分為四個(gè)等級(jí):優(yōu)、良、中、不及格,某班50名學(xué)生參加了體育
3、考試,結(jié)果如下:優(yōu)85分及以上9人良7584分15人中6074分21人不及格60分以下5人 在同一次考試中,某一位同學(xué)能否既得優(yōu)又得良? 從這個(gè)班任意抽取一位同學(xué),那么這位同學(xué)的體育成績(jī)?yōu)椤皟?yōu)良”(優(yōu)或良)的概率是多少? 為解決這個(gè)問題,我們學(xué)習(xí)概率的基本性質(zhì),教師板書課題.思路2(1)集合有相等、包含關(guān)系,如1,3=3,1,2,42,3,4,5等;(2)在擲骰子試驗(yàn)中,可以定義許多事件如:C1=出現(xiàn)1點(diǎn),C2=出現(xiàn)2點(diǎn),C3=出現(xiàn)1點(diǎn)或2點(diǎn),C4=出現(xiàn)的點(diǎn)數(shù)為偶數(shù). 師生共同討論:觀察上例,類比集合與集合的關(guān)系、運(yùn)算,你能發(fā)現(xiàn)事件的關(guān)系與運(yùn)算嗎?這就是本堂課要講的知識(shí)概率的基本性質(zhì).1 /
4、7思路3 全運(yùn)會(huì)中某省派兩名女乒乓球運(yùn)動(dòng)員參加單打比賽,她們奪取冠軍的概率分別是2/7和1/5,則該省奪取該次冠軍的概率是2/7+1/5,對(duì)嗎?為什么?為解決這個(gè)問題,我們學(xué)習(xí)概率的基本性質(zhì).推進(jìn)新課新知探究提出問題 在擲骰子試驗(yàn)中,可以定義許多事件如:C1=出現(xiàn)1點(diǎn),C2=出現(xiàn)2點(diǎn),C3=出現(xiàn)3點(diǎn),C4=出現(xiàn)4點(diǎn),C5=出現(xiàn)5點(diǎn),C6=出現(xiàn)6點(diǎn),D1=出現(xiàn)的點(diǎn)數(shù)不大于1,D2=出現(xiàn)的點(diǎn)數(shù)大于3,D3=出現(xiàn)的點(diǎn)數(shù)小于5,E=出現(xiàn)的點(diǎn)數(shù)小于7,F=出現(xiàn)的點(diǎn)數(shù)大于6,G=出現(xiàn)的點(diǎn)數(shù)為偶數(shù),H=出現(xiàn)的點(diǎn)數(shù)為奇數(shù), 類比集合與集合的關(guān)系、運(yùn)算說明這些事件的關(guān)系和運(yùn)算,并定義一些新的事件.(1)如果事件
5、C1發(fā)生,則一定發(fā)生的事件有哪些?反之,成立嗎?(2)如果事件C2發(fā)生或C4發(fā)生或C6發(fā)生,就意味著哪個(gè)事件發(fā)生?(3)如果事件D2與事件H同時(shí)發(fā)生,就意味著哪個(gè)事件發(fā)生?(4)事件D3與事件F能同時(shí)發(fā)生嗎?(5)事件G與事件H能同時(shí)發(fā)生嗎?它們兩個(gè)事件有什么關(guān)系?活動(dòng):學(xué)生思考或交流,教師提示點(diǎn)撥,事件與事件的關(guān)系要判斷準(zhǔn)確,教師及時(shí)評(píng)價(jià)學(xué)生的答案.討論結(jié)果:(1)如果事件C1發(fā)生,則一定發(fā)生的事件有D1,E,D3,H,反之,如果事件D1,E,D3,H分別成立,能推出事件C1發(fā)生的只有D1.(2)如果事件C2發(fā)生或C4發(fā)生或C6發(fā)生,就意味著事件G發(fā)生.(3)如果事件D2與事件H同時(shí)發(fā)生,就
6、意味著C5事件發(fā)生.(4)事件D3與事件F不能同時(shí)發(fā)生.(5)事件G與事件H不能同時(shí)發(fā)生,但必有一個(gè)發(fā)生.由此我們得到事件A,B的關(guān)系和運(yùn)算如下:如果事件A發(fā)生,則事件B一定發(fā)生,這時(shí)我們說事件B包含事件A(或事件A包含于事件B),記為BA(或AB),不可能事件記為,任何事件都包含不可能事件.如果事件A發(fā)生,則事件B一定發(fā)生,反之也成立,(若BA同時(shí)AB),我們說這兩個(gè)事件相等,即A=B.如C1=D1.如果某事件發(fā)生當(dāng)且僅當(dāng)事件A發(fā)生或事件B發(fā)生,則稱此事件為事件A與B的并事件(或和事件),記為AB或A+B.如果某事件發(fā)生當(dāng)且僅當(dāng)事件A發(fā)生且事件B發(fā)生,則稱此事件為事件A與B的交事件(或積事件
7、),記為AB或AB.如果AB為不可能事件(AB=),那么稱事件A與事件B互斥,即事件A與事件B在任何一次試驗(yàn)中不會(huì)同時(shí)發(fā)生.如果AB為不可能事件,AB為必然事件,那么稱事件A與事件B互為對(duì)立事件,即事件A與事件B在一次試驗(yàn)中有且僅有一個(gè)發(fā)生.繼續(xù)依次提出以下問題:(1)概率的取值范圍是多少?(2)必然事件的概率是多少?(3)不可能事件的概率是多少?(4)互斥事件的概率應(yīng)怎樣計(jì)算?(5)對(duì)立事件的概率應(yīng)怎樣計(jì)算?活動(dòng):學(xué)生根據(jù)試驗(yàn)的結(jié)果,結(jié)合自己對(duì)各種事件的理解,教師引導(dǎo)學(xué)生,根據(jù)概率的意義:(1)由于事件的頻數(shù)總是小于或等于試驗(yàn)的次數(shù),所以,頻率在01之間,因而概率的取值范圍也在01之間.(2
8、)必然事件是在試驗(yàn)中一定要發(fā)生的事件,所以頻率為1,因而概率是1.(3)不可能事件是在試驗(yàn)中一定不發(fā)生的事件,所以頻率為0,因而概率是0.(4)當(dāng)事件A與事件B互斥時(shí),AB發(fā)生的頻數(shù)等于事件A發(fā)生的頻數(shù)與事件B發(fā)生的頻數(shù)之和,互斥事件的概率等于互斥事件分別發(fā)生的概率之和.(5)事件A與事件B互為對(duì)立事件,AB為不可能事件,AB為必然事件,則AB的頻率為1,因而概率是1,由(4)可知事件B的概率是1與事件A發(fā)生的概率的差.討論結(jié)果:(1)概率的取值范圍是01之間,即0P(A)1.(2)必然事件的概率是1.如在擲骰子試驗(yàn)中,E=出現(xiàn)的點(diǎn)數(shù)小于7,因此P(E)=1.(3)不可能事件的概率是0,如在擲
9、骰子試驗(yàn)中,F=出現(xiàn)的點(diǎn)數(shù)大于6,因此P(F)=0.(4)當(dāng)事件A與事件B互斥時(shí),AB發(fā)生的頻數(shù)等于事件A發(fā)生的頻數(shù)與事件B發(fā)生的頻數(shù)之和,互斥事件的概率等于互斥事件分別發(fā)生的概率之和,即P(AB)=P(A)+P(B),這就是概率的加法公式.也稱互斥事件的概率的加法公式.(5)事件A與事件B互為對(duì)立事件,AB為不可能事件,AB為必然事件,P(AB)=1.所以1=P(A)+P(B),P(B)=1-P(A),P(A)=1-P(B).如在擲骰子試驗(yàn)中,事件G=出現(xiàn)的點(diǎn)數(shù)為偶數(shù)與H=出現(xiàn)的點(diǎn)數(shù)為奇數(shù)互為對(duì)立事件,因此P(G)=1-P(H). 上述這些都是概率的性質(zhì),利用這些性質(zhì)可以簡(jiǎn)化概率的計(jì)算,下面
10、我們看它的應(yīng)用.應(yīng)用示例思路1例1 一個(gè)射手進(jìn)行一次射擊,試判斷下列事件哪些是互斥事件?哪些是對(duì)立事件?事件A:命中環(huán)數(shù)大于7環(huán); 事件B:命中環(huán)數(shù)為10環(huán);事件C:命中環(huán)數(shù)小于6環(huán); 事件D:命中環(huán)數(shù)為6、7、8、9、10環(huán).活動(dòng):教師指導(dǎo)學(xué)生,要判斷所給事件是對(duì)立還是互斥,首先將兩個(gè)概念的聯(lián)系與區(qū)別弄清楚,互斥事件是指不可能同時(shí)發(fā)生的兩事件,而對(duì)立事件是建立在互斥事件的基礎(chǔ)上,兩個(gè)事件中一個(gè)不發(fā)生,另一個(gè)必發(fā)生.解:A與C互斥(不可能同時(shí)發(fā)生),B與C互斥,C與D互斥,C與D是對(duì)立事件(至少一個(gè)發(fā)生).點(diǎn)評(píng):判斷互斥事件和對(duì)立事件,要緊扣定義,搞清互斥事件和對(duì)立事件的關(guān)系,互斥事件是對(duì)立事
11、件的前提.變式訓(xùn)練 從一堆產(chǎn)品(其中正品與次品都多于2件)中任取2件,觀察正品件數(shù)與次品件數(shù),判斷下列每件事件是不是互斥事件,如果是,再判斷它們是不是對(duì)立事件.(1)恰好有1件次品恰好有2件次品;(2)至少有1件次品和全是次品;(3)至少有1件正品和至少有1件次品;(4)至少有1件次品和全是正品.解:依據(jù)互斥事件的定義,即事件A與事件B在一定試驗(yàn)中不會(huì)同時(shí)發(fā)生知:(1)恰好有1件次品和恰好有2件次品不可能同時(shí)發(fā)生,因此它們是互斥事件,又因?yàn)樗鼈儾⒉皇潜厝皇录?所以它們不是對(duì)立事件.同理可以判斷:(2)中的2個(gè)事件不是互斥事件,也不是對(duì)立事件.(3)中的2個(gè)事件既不是互斥事件也不是對(duì)立事件.(4
12、)中的2個(gè)事件既互斥又對(duì)立.例2 如果從不包括大小王的52張撲克牌中隨機(jī)抽取一張,那么取到紅心(事件A)的概率是,取到方塊(事件B)的概率是,問:(1)取到紅色牌(事件C)的概率是多少?(2)取到黑色牌(事件D)的概率是多少?活動(dòng):學(xué)生先思考或交流,教師及時(shí)指導(dǎo)提示,事件C是事件A與事件B的并,且A與B互斥,因此可用互斥事件的概率和公式求解,事件C與事件D是對(duì)立事件,因此P(D)=1-P(C).解:(1)因?yàn)镃=AB,且A與B不會(huì)同時(shí)發(fā)生,所以事件A與事件B互斥,根據(jù)概率的加法公式得P(C)=P(A)+P(B)=.(2)事件C與事件D互斥,且CD為必然事件,因此事件C與事件D是對(duì)立事件,P(D
13、)=1-P(C)=.點(diǎn)評(píng):利用概率的加法公式,一定要注意使用條件,千萬不可大意.變式訓(xùn)練 某射手在一次射擊訓(xùn)練中,射中10環(huán)、9環(huán)、8環(huán)、7環(huán)的概率分別為0.21、0.23、0.25、0.28,計(jì)算該射手在一次射擊中:(1)射中10環(huán)或9環(huán)的概率;(2)少于7環(huán)的概率.解:(1)該射手射中10環(huán)與射中9環(huán)的概率是射中10環(huán)的概率與射中9環(huán)的概率的和,即為0.21+0.23=0.44.(2)射中不少于7環(huán)的概率恰為射中10環(huán)、9環(huán)、8環(huán)、7環(huán)的概率的和,即為0.21+0.23+0.25+0.28=0.97,而射中少于7環(huán)的事件與射中不少于7環(huán)的事件為對(duì)立事件,所以射中少于7環(huán)的概率為1-0.97
14、=0.03.思路2例1 拋擲一骰子,觀察擲出的點(diǎn)數(shù),設(shè)事件A為“出現(xiàn)奇數(shù)點(diǎn)”,B為“出現(xiàn)偶數(shù)點(diǎn)”,已知P(A)= ,P(B)=,求出“出現(xiàn)奇數(shù)點(diǎn)或偶數(shù)點(diǎn)”的概率?活動(dòng):學(xué)生思考或討論,教師引導(dǎo),拋擲骰子,事件“出現(xiàn)奇數(shù)點(diǎn)”和“出現(xiàn)偶數(shù)點(diǎn)”是彼此互斥的,并且是相互獨(dú)立事件,可以運(yùn)用概率的加法公式求解.解:記“出現(xiàn)奇數(shù)點(diǎn)或偶數(shù)點(diǎn)”為事件C,則C=AB,因?yàn)锳、B是互斥事件,所以P(C)=P(A)+P(B)=+=1.出現(xiàn)奇數(shù)點(diǎn)或偶數(shù)點(diǎn)的概率為1.變式訓(xùn)練 拋擲一粒骰子,觀察擲出的點(diǎn)數(shù),設(shè)事件A為出現(xiàn)奇數(shù),事件B為出現(xiàn)2點(diǎn),已知P(A)=,P(B)=,求出現(xiàn)奇數(shù)點(diǎn)或2點(diǎn)的概率之和.解:“出現(xiàn)奇數(shù)點(diǎn)”的
15、概率是事件A,“出現(xiàn)2點(diǎn)”的概率是事件B,“出現(xiàn)奇數(shù)點(diǎn)或2點(diǎn)”的概率之和為P(C)=P(A)+P(B)=+=.例2 袋中有12個(gè)小球,分別為紅球、黑球、黃球、綠球,從中任取一球,得到紅球的概率為,得到黑球或黃球的概率是,得到黃球或綠球的概率也是,試求得到黑球、得到黃球、得到綠球的概率各是多少?活動(dòng):學(xué)生閱讀題目,交流討論,教師點(diǎn)撥,利用方程的思想及互斥事件、對(duì)立事件的概率公式求解.解:從袋中任取一球,記事件“摸到紅球”“摸到黑球”“摸到黃球”“摸到綠球”為A、B、C、D,則有P(BC)=P(B)+P(C)=;P(CD)=P(C)+P(D)=;P(BCD)=1-P(A)=1=,解得P(B)=,P
16、(C)=,P(D)=.即得到黑球、得到黃球、得到綠球的概率分別是、.變式訓(xùn)練 已知盒子中有散落的棋子15粒,其中6粒是黑子,9粒是白子,已知從中取出2粒都是黑子的概率是,從中取出2粒都是白子的概率是,現(xiàn)從中任意取出2粒恰好是同一色的概率是多少?解:從盒子中任意取出2粒恰好是同一色的概率恰為取2粒白子的概率與2粒黑子的概率的和,即為+.知能訓(xùn)練1.下列說法中正確的是( )A.事件A、B中至少有一個(gè)發(fā)生的概率一定比A、B中恰有一個(gè)發(fā)生的概率大B.事件A、B同時(shí)發(fā)生的概率一定比事件A、B恰有一個(gè)發(fā)生的概率小C.互斥事件一定是對(duì)立事件,對(duì)立事件不一定是互斥事件D.互斥事件不一定是對(duì)立事件,對(duì)立事件一定
17、是互斥事件答案:D2.課本練習(xí)15.拓展提升1.從男女學(xué)生共有36名的班級(jí)中,任意選出2名委員,任何人都有同樣的當(dāng)選機(jī)會(huì).如果選得同性委員的概率等于,求男女生相差幾名?解:設(shè)男生有x名,則女生有36-x名.選得2名委員都是男性的概率為.選得2名委員都是女性的概率為.以上兩種選法是互斥的,又選得同性委員的概率等于,得+=.解得x=15或x=21.即男生有15名,女生有36-15=21名,或男生有21名,女生有36-21=15名.總之,男女生相差6名.2.黃種人群中各種血型的人所占的比如下表所示:血型ABABO該血型的人所占比/%2829835 已知同種血型的人可以輸血,O型血可以輸給任一種血型的
18、人,任何人的血都可以輸給AB型血的人,其他不同血型的人不能互相輸血.小明是B型血,若小明因病需要輸血,問:(1)任找一個(gè)人,其血可以輸給小明的概率是多少?(2)任找一個(gè)人,其血不能輸給小明的概率是多少?解:(1)對(duì)任一人,其血型為A,B,AB,O型血的事件分別記為A,B,C,D,它們是互斥的.由已知,有P(A)=0.28,P(B)=0.29,P(C)=0.08,P(D)=0.35.因?yàn)锽,O型血可以輸給B型血的人,故“可以輸給B型血的人”為事件B+D.根據(jù)互斥事件的加法公式,有P(B+D)=P(B)+P(D)=0.29+0.35=0.64.(2)由于A,AB型血不能輸給B型血的人,故“不能輸給B型血的人”為事件A+C,且P(A+C)=P(A)+P(C)=0.28+0.08=0.36. 即任找一人,其血可以輸給小明的概率為0.64,其血不能輸給小明的概率為0.36.注:第(2)問也可以這樣解:因?yàn)槭录捌溲梢暂斀oB型血的人”與事件“其血不能輸給B型血的人”是對(duì)立事件,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 科技教育下的孩子能力培養(yǎng)新方向
- 用戶體驗(yàn)與視覺傳達(dá)效果的美學(xué)探討
- 科技發(fā)展下的多媒體匯報(bào)制作技巧
- 物聯(lián)技術(shù)驅(qū)動(dòng)下的健康醫(yī)療設(shè)施優(yōu)化方案
- 第22章 第3節(jié) 《人的性別決定》教學(xué)設(shè)計(jì)-2024-2025學(xué)年初中生物八年級(jí)下冊(cè)同步教學(xué)(蘇教版)
- 廣西金融職業(yè)技術(shù)學(xué)院《生物技術(shù)學(xué)科導(dǎo)論》2023-2024學(xué)年第二學(xué)期期末試卷
- 新疆理工學(xué)院《大美勞動(dòng)》2023-2024學(xué)年第二學(xué)期期末試卷
- 浙江城市抗震支架施工方案
- 2025年幼兒園中班科學(xué)標(biāo)準(zhǔn)教案《討厭黑夜的席奶奶》
- 滄州醫(yī)學(xué)高等??茖W(xué)?!缎畔踩シ缹?duì)抗實(shí)訓(xùn)》2023-2024學(xué)年第二學(xué)期期末試卷
- GB∕T 28575-2020 YE3系列(IP55)三相異步電動(dòng)機(jī)技術(shù)條件(機(jī)座號(hào)63~355)
- 2022醫(yī)院設(shè)備科工作制度
- 【23精品】蘇少小學(xué)美術(shù)三下教案全冊(cè)
- 房屋租賃(出租)家私清單
- 倉儲(chǔ)貨架ppt課件
- 《保健按摩師》(五級(jí))理論知識(shí)鑒定要素細(xì)目表
- 陳日新腧穴熱敏化艾灸新療法上篇
- PID烙鐵恒溫控制器設(shè)計(jì)與制作_圖文
- wincc全套腳本總結(jié)
- 簡(jiǎn)易瞬態(tài)工況法1
- 中國鐵路總公司環(huán)境保護(hù)管理辦法(鐵總計(jì)統(tǒng)〔2015〕260號(hào))
評(píng)論
0/150
提交評(píng)論