![Introduction to Biostatistics,SPSS Instructions,2004,[Larry Winner]_第1頁](http://file2.renrendoc.com/fileroot_temp3/2021-5/11/6819b048-5639-4223-b5cc-f56b529495ab/6819b048-5639-4223-b5cc-f56b529495ab1.gif)
![Introduction to Biostatistics,SPSS Instructions,2004,[Larry Winner]_第2頁](http://file2.renrendoc.com/fileroot_temp3/2021-5/11/6819b048-5639-4223-b5cc-f56b529495ab/6819b048-5639-4223-b5cc-f56b529495ab2.gif)
![Introduction to Biostatistics,SPSS Instructions,2004,[Larry Winner]_第3頁](http://file2.renrendoc.com/fileroot_temp3/2021-5/11/6819b048-5639-4223-b5cc-f56b529495ab/6819b048-5639-4223-b5cc-f56b529495ab3.gif)
![Introduction to Biostatistics,SPSS Instructions,2004,[Larry Winner]_第4頁](http://file2.renrendoc.com/fileroot_temp3/2021-5/11/6819b048-5639-4223-b5cc-f56b529495ab/6819b048-5639-4223-b5cc-f56b529495ab4.gif)
![Introduction to Biostatistics,SPSS Instructions,2004,[Larry Winner]_第5頁](http://file2.renrendoc.com/fileroot_temp3/2021-5/11/6819b048-5639-4223-b5cc-f56b529495ab/6819b048-5639-4223-b5cc-f56b529495ab5.gif)
版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
1、spss instructions for introduction to biostatistics larry winner department of statistics university of florida spss windows data view used to display data columns represent variables rows represent individual units or groups of units that share common values of variables variable view used to displ
2、ay information on variables in dataset type: allows for various styles of displaying label: allows for longer description of variable name values: allows for longer description of variable levels measure: allows choice of measurement scale output view displays results of analyses/graphs data entry t
3、ips i for variables that are not identifiers (such as name, county, school, etc), use numeric values for levels and use the values option in variable view to give their levels. some procedures require numeric labels for levels. spss will print the values on output for large datasets, use a spreadshe
4、et such as excel which is more flexible for data entry, and import the file into spss give descriptive label to variable names in the variable view keep in mind that columns are variables, you dont want multiple columns with the same variable data entry/analysis tips ii when re-analyzing previously
5、published data, it is often possible to have only a few outcomes (especially with categorical data), with many individuals sharing the same outcomes (as in contingency tables) for ease of data entry: create one line for each combination of factor levels create a new variable representing a count of
6、the number of individuals sharing this “outcome” when analyzing data click on: data weight cases weight cases by click on the variable representing count all subsequent analyses treat that outcome as if it occurred count times example 1.3 - grapefruit juice study crcl 38 66 74 99 80 64 80 120 to imp
7、ort an excel file, click on: file open data then change files of type to excel (.xls) to import a text or data file, click on: file open data then change files of type to text (.txt) or data (.dat) you will be prompted through a series of dialog boxes to import dataset descriptive statistics-numeric
8、 data after importing your dataset, and providing names to variables, click on: analyze descriptive statistics descriptives choose any variables to be analyzed and place them in box on right options include: n s s n yy s y n y y n i i n i i n i i :mean s.e. :variance 1 :deviation std. :sum :mean 2 1
9、 2 1 1 example 1.3 - grapefruit juice study descriptive statistics 83812062177.638.6324.401595.411 8 crcl valid n (listwise) statisticstatisticstatisticstatisticstatisticstd. errorstatisticstatistic nminimummaximumsummean std. deviation variance descriptive statistics-general data after importing yo
10、ur dataset, and providing names to variables, click on: analyze descriptive statistics frequencies choose any variables to be analyzed and place them in box on right options include (for categorical variables): frequency tables pie charts, bar charts options include (for numeric variables) frequency
11、 tables (useful for discrete data) measures of central tendency, dispersion, percentiles pie charts, histograms example 1.4 - smoking status smkstts 199037.937.937.9 106320.320.358.2 60911.611.669.8 133225.425.495.2 2534.84.8100.0 5247100.0100.0 never smoked quit 10 years ago quit 10 years ago curre
12、nt cigarette smoker other tobacco user total valid frequencypercentvalid percent cumulative percent vertical bar charts and pie charts after importing your dataset, and providing names to variables, click on: graphs bar simple (summaries for groups of cases) define bars represent n of cases (or % of
13、 cases) put the variable of interest as the category axis graphs pie (summaries for groups of cases) define slices represent n of cases (or % of cases) put the variable of interest as the define slices by example 1.5 - antibiotic study outcome 54321 count 80 60 40 20 0 5 4 3 2 1 histograms after imp
14、orting your dataset, and providing names to variables, click on: graphs histogram select variable to be plotted click on display normal curve if you want a normal curve superimposed (see chapter 3). example 1.6 - drug approval times months 120.0 110.0 100.0 90.0 80.0 70.0 60.0 50.0 40.0 30.0 20.0 10
15、.0 0.0 30 20 10 0 std. dev = 20.97 mean = 32.1 n = 175.00 side-by-side bar charts after importing your dataset, and providing names to variables, click on: graphs bar clustered (summaries for groups of cases) define bars represent n of cases (or % of cases) category axis: variable that represents gr
16、oups to be compared (independent variable) define clusters by: variable that represents outcomes of interest (dependent variable) example 1.7 - streptomycin study trt 21 count 30 20 10 0 outcome 1 2 3 4 5 6 scatterplots after importing your dataset, and providing names to variables, click on: graphs
17、 scatter simple define for y-axis, choose the dependent (response) variable for x-axis, choose the independent (explanatory) variable example 1.8 - theophylline clearance drug 3.53.02.52.01.51.0.5 thclrnce 8 7 6 5 4 3 2 1 0 scatterplots with 2 independent variables after importing your dataset, and
18、providing names to variables, click on: graphs scatter simple define for y-axis, choose the dependent variable for x-axis, choose the independent variable with the most levels for set markers by, choose the independent variable with the fewest levels example 1.8 - theophylline clearance subject 1614
19、121086420 thclrnce 8 7 6 5 4 3 2 1 0 drug tagamet pepcid placebo contingency tables for conditional probabilities after importing your dataset, and providing names to variables, click on: analyze descriptive statistics crosstabs for rows, select the variable you are conditioning on (independent vari
20、able) for columns, select the variable you are finding the conditional probability of (dependent variable) click on cells click on row percentages example 1.10 - alcohol & mortality wine * death crosstabulation 10535215512690 83.0%17.0%100.0% 52174595 87.6%12.4%100.0% 11056222913285 83.2%16.8%100.0%
21、 count % within wine count % within wine count % within wine 0 1 wine total 01 death total independent sample t-test after importing your dataset, and providing names to variables, click on: analyze compare means independent samples t-test for test variable, select the dependent (response) variable(
22、s) for grouping variable, select the independent variable. then define the names of the 2 levels to be compared (this can be used even when the full dataset has more than 2 levels for independent variable). example 3.5 - levocabastine in renal patients group statistics 6563.83172.03270.232 6499.6713
23、1.40953.647 group non-dialysis hemodialysis auc nmeanstd. deviation std. error mean independent samples test .204.661.72610.48464.1788.377-132.750261.083 .7269.353.48664.1788.377-134.613262.946 equal variances assumed equal variances not assumed auc fsig. levenes test for equality of variances tdfsi
24、g. (2-tailed) mean difference std. error differencelowerupper 95% confidence interval of the difference t-test for equality of means wilcoxon rank-sum/mann-whitney tests after importing your dataset, and providing names to variables, click on: analyze nonparametric tests 2 independent samples for te
25、st variable, select the dependent (response) variable(s) for grouping variable, select the independent variable. then define the names of the 2 levels to be compared (this can be used even when the full dataset has more than 2 levels for independent variable). click on mann-whitney u example 3.6 - l
26、evocabastine in renal patients ranks 67.5045.00 65.5033.00 12 group non-dialysis hemodialysis total auc nmean ranksum of ranks test statistics b 12.000 33.000 -.962 .336 .394 a mann-whitney u wilcoxon w z asymp. sig. (2-tailed) exact sig. 2*(1-tailed sig.) auc not corrected for ties.a. grouping vari
27、able: groupb. paired t-test after importing your dataset, and providing names to variables, click on: analyze compare means paired samples t-test for paired variables, select the two dependent (response) variables (the analysis will be based on first variable minus second variable) example 3.7 - cma
28、x in src&irc codeine paired samples statistics 217.8381379.779222.1268 138.8151359.363516.4645 src irc pair 1 meannstd. deviation std. error mean paired samples correlations 13.746.003src & ircpair 1 ncorrelationsig. paired samples test 79.02353.095914.726246.938111.1095.36612.000src - ircpair 1 mea
29、nstd. deviation std. error meanlowerupper 95% confidence interval of the difference paired differences tdfsig. (2-tailed) wilcoxon signed-rank test after importing your dataset, and providing names to variables, click on: analyze nonparametric tests 2 related samples for paired variables, select the
30、 two dependent (response) variables (be careful in determining which order the differences are being obtained, it will be clear on output) click on wilcoxon option example 3.8 - t1/2ss in src&irc codeine ranks 9a6.8962.00 3b5.3316.00 1c 13 negative ranks positive ranks ties total irc - src nmean ran
31、ksum of ranks irc srcb. irc = srcc. test statistics b -1.805a .071 z asymp. sig. (2-tailed) irc - src based on positive ranks.a. wilcoxon signed ranks testb. relative risks and odds ratios after importing your dataset, and providing names to variables, click on: analyze descriptive statistics crosst
32、abs for rows, select the independent variable for columns, select the dependent variable under statistics, click on risk under cells, click on observed and row percentages note: you will want to code the data so that the outcome present (success) category has the lower value (e.g. 1) and the outcome
33、 absent (failure) category has the higher value (e.g. 2). similar for exposure present category (e.g. 1) and exposure absent (e.g. 2). use value labels to keep output straight. example 5.1 - pamidronate study pamidrev * sklevrev crosstabulation 47149196 24.0%76.0%100.0% 74107181 40.9%59.1%100.0% 121
34、256377 32.1%67.9%100.0% count % within pamidrev count % within pamidrev count % within pamidrev pamidronate placebo pamidrev total yesno sklevrev total risk estimate .456.293.710 .587.432.795 1.2861.1131.486 377 odds ratio for pamidrev (pamidronate / placebo) for cohort sklevrev = yes for cohort skl
35、evrev = no n of valid cases valuelowerupper 95% confidence interval example 5.2 - lip cancer pipesrev * lipcrev crosstabulation 339149488 69.5%30.5%100.0% 198351549 36.1%63.9%100.0% 5375001037 51.8%48.2%100.0% count % within pipesrev count % within pipesrev count % within pipesrev yes no pipesrev to
36、tal yesno lipcrev total risk estimate 4.0333.1115.229 1.9261.6982.185 .478.412.554 1037 odds ratio for pipesrev (yes / no) for cohort lipcrev = yes for cohort lipcrev = no n of valid cases valuelowerupper 95% confidence interval fishers exact test after importing your dataset, and providing names to
37、 variables, click on: analyze descriptive statistics crosstabs for rows, select the independent variable for columns, select the dependent variable under statistics, click on chi-square under cells, click on observed and row percentages note: you will want to code the data so that the outcome presen
38、t (success) category has the lower value (e.g. 1) and the outcome absent (failure) category has the higher value (e.g. 2). similar for exposure present category (e.g. 1) and exposure absent (e.g. 2). use value labels to keep output straight. example 5.5 - antiseptic experiment trtrev * deathrev cros
39、stabulation 63440 15.0%85.0%100.0% 161935 45.7%54.3%100.0% 225375 29.3%70.7%100.0% count % within trtrev count % within trtrev count % within trtrev antiseptic control trtrev total deathno death deathrev total chi-square tests 8.495b1.004 7.0781.008 8.6871.003 .005.004 8.3821.004 75 pearson chi-squa
40、re continuity correctiona likelihood ratio fishers exact test linear-by-linear association n of valid cases valuedf asymp. sig. (2-sided) exact sig. (2-sided) exact sig. (1-sided) computed only for a 2x2 tablea. 0 cells (.0%) have expected count less than 5. the minimum expected count is 10.27. b. m
41、cnemars test after importing your dataset, and providing names to variables, click on: analyze descriptive statistics crosstabs for rows, select the outcome for condition/time 1 for columns, select the outcome for condition/time 2 under statistics, click on mcnemar under cells, click on observed and
42、 total percentages note: you will want to code the data so that the outcome present (success) category has the lower value (e.g. 1) and the outcome absent (failure) category has the higher value (e.g. 2). similar for exposure present category (e.g. 1) and exposure absent (e.g. 2). use value labels t
43、o keep output straight. example 5.6 - report of implant leak selfrev * surgrev crosstabulation 692897 41.8%17.0%58.8% 56368 3.0%38.2%41.2% 7491165 44.8%55.2%100.0% count % of total count % of total count % of total present absent selfrev total presentabsent surgrev total chi-square tests .000a 165 m
44、cnemar test n of valid cases value exact sig. (2-sided) binomial distribution used.a. p-value cochran mantel-haenszel test after importing your dataset, and providing names to variables, click on: analyze descriptive statistics crosstabs for rows, select the independent variable for columns, select
45、the dependent variable for layers, select the strata variable under statistics, click on cochrans and mantel- haenszel statistics note: you will want to code the data so that the outcome present (success) category has the lower value (e.g. 1) and the outcome absent (failure) category has the higher
46、value (e.g. 2). similar for exposure present category (e.g. 1) and exposure absent (e.g. 2). use value labels to keep output straight. example 5.7 smoking/death by age smokerev * deathrev * age crosstabulation count 6473999040637 2042013220336 8516012260973 8573289433751 3942167122065 12515456555816
47、 8552073921594 4881979020278 13434052941872 6431119711840 7661649917265 14092769629105 smoke no smoke smokerev total smoke no smoke smokerev total smoke no smoke smokerev total smoke no smoke smokerev total age 50-54 55-59 60-64 65-69 deathno death deathrev total mantel-haenszel common odds ratio es
48、timate 1.457 .377 .031 .000 1.372 1.548 .316 .437 estimate ln(estimate) std. error of ln(estimate) asymp. sig. (2-sided) lower bound upper bound common odds ratio lower bound upper bound ln(common odds ratio) asymp. 95% confidence interval the mantel-haenszel common odds ratio estimate is asymptotic
49、ally normally distributed under the common odds ratio of 1.000 assumption. so is the natural log of the estimate. chi-square test after importing your dataset, and providing names to variables, click on: analyze descriptive statistics crosstabs for rows, select the independent variable for columns,
50、select the dependent variable under statistics, click on chi-square under cells, click on observed, expected, row percentages, and adjusted standardized residuals note: large adjusted standardized residuals (in absolute value) show which cells are inconsistent with null hypothesis of independence. a
51、 common rule of thumb is seeing which if any cells have values 3 in absolute value example 5.8 - marital status & cancer marital * cancrev crosstabulation 294776 38.137.976.0 38.2%61.8%100.0% -2.32.3 116108224 112.3111.7224.0 51.8%48.2%100.0% .7-.7 6756123 61.661.4123.0 54.5%45.5%100.0% 1.1-1.1 5510
52、 5.05.010.0 50.0%50.0%100.0% .0.0 217216433 217.0216.0433.0 50.1%49.9%100.0% count expected count % within marital adjusted residual count expected count % within marital adjusted residual count expected count % within marital adjusted residual count expected count % within marital adjusted residual
53、 count expected count % within marital single married widowed div/sep marital total cancerno cancer cancrev total chi-square tests 5.530a3.137 5.5723.134 3.6311.057 433 pearson chi-square likelihood ratio linear-by-linear association n of valid cases valuedf asymp. sig. (2-sided) 1 cells (12.5%) hav
54、e expected count less than 5. the minimum expected count is 4.99. a. goodman & kruskals g / kendalls tb after importing your dataset, and providing names to variables, click on: analyze descriptive statistics crosstabs for rows, select the independent variable for columns, select the dependent varia
55、ble under statistics, click on gamma and kendalls tb examples 5.9,10 - nicotine patch/exhaustion dose * exhstn crosstabulation count 16218 16218 13417 14418 591271 1 2 3 4 dose total 12 exhstn total symmetric measures .124.1041.166.243 .269.2201.166.243 71 kendalls tau-b gamma ordinal by ordinal n o
56、f valid cases value asymp. std. error a approx. t b approx. sig. not assuming the null hypothesis.a. using the asymptotic standard error assuming the null hypothesis.b. kruskal-wallis test after importing your dataset, and providing names to variables, click on: analyze nonparametric tests k indepen
57、dent samples for test variable, select dependent variable for grouping variable, select independent variable, then define range of levels of variable (minimum and maximum) click on kruskal-wallis h example 5.11 - antibiotic delivery ranks 181285.65 181261.15 179266.14 541 delivery 1 2 3 total outcom
58、e nmean rank test statistics a,b 2.755 2 .252 chi-square df asymp. sig. outcome kruskal wallis testa. grouping variable: deliveryb. note: this statistic makes the adjustment for ties. see hollander and wolfe (1973), p. 140. cohens k after importing your dataset, and providing names to variables, cli
59、ck on: analyze descriptive statistics crosstabs for rows, select rater 1 for columns, select rater 2 under statistics, click on kappa under cells, click on total percentages to get the observed percentages in each cell (the first number under observed count in table 5.17). example 5.12 - siskel & eb
60、ert siskel * ebert crosstabulation 2481345 15.0%5.0%8.1%28.1% 8131132 5.0%8.1%6.9%20.0% 1096483 6.3%5.6%40.0%51.9% 423088160 26.3%18.8%55.0%100.0% count % of total count % of total count % of total count % of total -1 0 1 siskel total -101 ebert total symmetric measures .389.0606.731.000 160 kappame
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 現(xiàn)代交通樞紐的鐵路貨運效率優(yōu)化
- 深度解讀如何用云計算構建高效智能制造平臺
- 國慶節(jié)巡航摩旅活動方案
- 小學趣味運動會活動方案策劃
- 2024年春七年級地理下冊 第九章 第二節(jié) 巴西說課稿 (新版)新人教版
- 23 梅蘭芳蓄須說課稿-2024-2025學年四年級上冊語文統(tǒng)編版001
- 8 千年夢圓在今朝(說課稿)2023-2024學年部編版語文四年級下冊
- 5 協(xié)商決定班級事務 說課稿-2024-2025學年道德與法治五年級上冊統(tǒng)編版
- 2023八年級英語上冊 Module 9 Population Unit 3 Language in use說課稿(新版)外研版
- 《10天然材料和人造材料》說課稿-2023-2024學年科學三年級下冊青島版
- 煤場用車輛倒運煤的方案
- 《預防犯罪》課件
- 【企業(yè)作業(yè)成本在上海汽車集團中的應用研究案例7300字(論文)】
- 《民航服務溝通技巧》教案第6課巧妙化解沖突
- 化學用語專項訓練
- 《了凡四訓》課件
- 醫(yī)院住院病人健康教育表
- 風險矩陣法(詳細)
- 實驗室供應商評價的5個基本步驟
- 電力公司工程勘察設計管理辦法
評論
0/150
提交評論