




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
1、集合的含義與表示一.教材分析:集合概念及其基本理論,稱為集合論,是近、現(xiàn)代數(shù)學(xué)的一個重要的基礎(chǔ),一方面,許多重要的數(shù)學(xué)分支,都建立在集合理論的基礎(chǔ)上。另一方面,集合論及其所反映的數(shù)學(xué)思想,在越來越廣泛的領(lǐng)域種得到應(yīng)用。二.目標(biāo)分析: 教學(xué)重點.難點 重點:集合的含義與表示方法. 難點:表示法的恰當(dāng)選擇.教學(xué)目標(biāo) l.知識與技能 (1)通過實例,了解集合的含義,體會元素與集合的屬于關(guān)系; (2)知道常用數(shù)集及其專用記號; (3)了解集合中元素的確定性.互異性.無序性; (4)會用集合語言表示有關(guān)數(shù)學(xué)對象;2. 過程與方法 (1)讓學(xué)生經(jīng)歷從集合實例中抽象概括出集合共同特征的過程,感知集合的含義.
2、 (2)讓學(xué)生歸納整理本節(jié)所學(xué)知識. 3. 情感.態(tài)度與價值觀 使學(xué)生感受到學(xué)習(xí)集合的必要性,增強學(xué)習(xí)的積極性.三. 教法分析 1. 教學(xué)方法:學(xué)生通過閱讀教材,自主學(xué)習(xí).思考.交流.討論和概括,從而更好地完成本節(jié)課的教學(xué)目標(biāo).2. 教學(xué)手段:在教學(xué)中使用投影儀來輔助教學(xué).四.過程分析(一)創(chuàng)設(shè)情景,揭示課題 1教師首先提出問題:(1)介紹自己的家庭、原來就讀的學(xué)校、現(xiàn)在的班級。 (2)問題:像“家庭”、“學(xué)?!薄ⅰ鞍嗉墶钡?,有什么共同特征? 引導(dǎo)學(xué)生互相交流. 與此同時,教師對學(xué)生的活動給予評價. 2.活動:(1)列舉生活中的集合的例子;(2)分析、概括各實例的共同特征 由此引出這節(jié)要學(xué)的內(nèi)
3、容。設(shè)計意圖:既激發(fā)了學(xué)生濃厚的學(xué)習(xí)興趣,又為新知作好鋪墊 (二)研探新知,建構(gòu)概念 1教師利用多媒體設(shè)備向?qū)W生投影出下面7個實例: (1)120以內(nèi)的所有質(zhì)數(shù); (2)我國古代的四大發(fā)明; (3)所有的安理會常任理事國; (4)所有的正方形; (5)海南省在2004年9月之前建成的所有立交橋;(6)到一個角的兩邊距離相等的所有的點; (7)國興中學(xué)2004年9月入學(xué)的高一學(xué)生的全體.2教師組織學(xué)生分組討論:這7個實例的共同特征是什么? 3.每個小組選出位同學(xué)發(fā)表本組的討論結(jié)果,在此基礎(chǔ)上,師生共同概括出7個實例的特征,并給出集合的含義. 一般地,指定的某些對象的全體稱為集合(簡稱為集).集合
4、中的每個對象叫作這個集合的元素.4.教師指出:集合常用大寫字母a,b,c,d,表示,元素常用小寫字母表示.設(shè)計意圖:通過實例讓學(xué)生感受集合的概念,激發(fā)學(xué)習(xí)的興趣,培養(yǎng)學(xué)生樂于求索的精神(三)質(zhì)疑答辯,發(fā)展思維 1教師引導(dǎo)學(xué)生閱讀教材中的相關(guān)內(nèi)容,思考:集合中元素有什么特點?并注意個別輔導(dǎo),解答學(xué)生疑難.使學(xué)生明確集合元素的三大特性,即:確定性.互異性和無序性.只要構(gòu)成兩個集合的元素是一樣的,我們就稱這兩個集合相等. 2教師組織引導(dǎo)學(xué)生思考以下問題: 判斷以下元素的全體是否組成集合,并說明理由: (1)大于3小于11的偶數(shù); (2)我國的小河流. 讓學(xué)生充分發(fā)表自己的建解. 3. 讓學(xué)生自己舉出
5、一些能夠構(gòu)成集合的例子以及不能構(gòu)成集合的例子,并說明理由.教師對學(xué)生的學(xué)習(xí)活動給予及時的評價. 4.教師提出問題,讓學(xué)生思考 (1)如果用a表示高(3)班全體學(xué)生組成的集合,用表示高一(3)班的一位同學(xué),是高一(4)班的一位同學(xué),那么與集合a分別有什么關(guān)系?由此引導(dǎo)學(xué)生得出元素與集合的關(guān)系有兩種:屬于和不屬于. 如果是集合a的元素,就說屬于集合a,記作. 如果不是集合a的元素,就說不屬于集合a,記作. (2)如果用a表示“所有的安理會常任理事國”組成的集合,則中國.日本與集合a的關(guān)系分別是什么?請用數(shù)學(xué)符號分別表示 (3)讓學(xué)生完成教材第6頁練習(xí)第1題. 5.教師引導(dǎo)學(xué)生回憶數(shù)集擴充過程,然后
6、閱讀教材中的相交內(nèi)容,寫出常用數(shù)集的記號.并讓學(xué)生完成習(xí)題1.1a組第1題. 6.教師引導(dǎo)學(xué)生閱讀教材中的相關(guān)內(nèi)容,并思考.討論下列問題: (1)要表示一個集合共有幾種方式? (2)試比較自然語言.列舉法和描述法在表示集合時,各自有什么特點?適用的對象是什么? (3)如何根據(jù)問題選擇適當(dāng)?shù)募媳硎痉?使學(xué)生弄清楚三種表示方式的優(yōu)缺點和體會它們存在的必要性和適用對象。設(shè)計意圖:明確集合元素的三大特性,使學(xué)生弄清楚三種表示方式的優(yōu)缺點,從而突破難點。(四)鞏固深化,反饋矯正 教師投影學(xué)習(xí):(1)用自然語言描述集合1,3,5,7,9; (2)用例舉法表示集合(3)試選擇適當(dāng)?shù)姆椒ū硎鞠铝屑希航滩牡?/p>
7、6頁練習(xí)第2題.設(shè)計意圖:使學(xué)生及時鞏固所學(xué)新知,體會三種表示方式存在的必要性和適用對象(五)歸納小結(jié),布置作業(yè)小結(jié):在師生互動中,讓學(xué)生了解或體會下例問題: 1本節(jié)課我們學(xué)習(xí)了哪些知識內(nèi)容? 2你認為學(xué)習(xí)集合有什么意義?3選擇集合的表示法時應(yīng)注意些什么?設(shè)計意圖:通過回顧,對概念的發(fā)生與發(fā)展過程有清晰的認識,回顧集合元素的三大特性及集合的三種表示方式。 作業(yè): 1課后書面作業(yè):第13頁習(xí)題1.1a組第4題.2. 元素與集合的關(guān)系有多少種?如何表示?類似地集合與集合間的關(guān)系又有多少種呢?如何表示?請同學(xué)們通過預(yù)習(xí)教材.五.板書分析 ppt 集合的含義與表示定義 例1集合 元素 例2元素與集合的
8、關(guān)系 作業(yè) 課題:1.2.1函數(shù)的概念教材分析:函數(shù)是描述客觀世界變化規(guī)律的重要數(shù)學(xué)模型高中階段不僅把函數(shù)看成變量之間的依賴關(guān)系,同時還用集合與對應(yīng)的語言刻畫函數(shù),高中階段更注重函數(shù)模型化的思想教學(xué)目的:(1)通過豐富實例,進一步體會函數(shù)是描述變量之間的依賴關(guān)系的重要數(shù)學(xué)模型,在此基礎(chǔ)上學(xué)習(xí)用集合與對應(yīng)的語言來刻畫函數(shù),體會對應(yīng)關(guān)系在刻畫函數(shù)概念中的作用;(2)了解構(gòu)成函數(shù)的要素;(3)會求一些簡單函數(shù)的定義域和值域;(4)能夠正確使用“區(qū)間”的符號表示某些函數(shù)的定義域;教學(xué)重點:理解函數(shù)的模型化思想,用合與對應(yīng)的語言來刻畫函數(shù);教學(xué)難點:符號“y=f(x)”的含義,函數(shù)定義域和值域的區(qū)間表示
9、;教學(xué)過程:一、 引入課題1. 復(fù)習(xí)初中所學(xué)函數(shù)的概念,強調(diào)函數(shù)的模型化思想;2. 閱讀課本引例,體會函數(shù)是描述客觀事物變化規(guī)律的數(shù)學(xué)模型的思想:(1)炮彈的射高與時間的變化關(guān)系問題;(2)南極臭氧空洞面積與時間的變化關(guān)系問題;(3)“八五”計劃以來我國城鎮(zhèn)居民的恩格爾系數(shù)與時間的變化關(guān)系問題備用實例:我國2003年4月份非典疫情統(tǒng)計:日 期222324252627282930新增確診病例數(shù)10610589103113126981521013. 引導(dǎo)學(xué)生應(yīng)用集合與對應(yīng)的語言描述各個實例中兩個變量間的依賴關(guān)系;4. 根據(jù)初中所學(xué)函數(shù)的概念,判斷各個實例中的兩個變量間的關(guān)系是否是函數(shù)關(guān)系二、 新課
10、教學(xué)(一)函數(shù)的有關(guān)概念1函數(shù)的概念:設(shè)a、b是非空的數(shù)集,如果按照某個確定的對應(yīng)關(guān)系f,使對于集合a中的任意一個數(shù)x,在集合b中都有唯一確定的數(shù)f(x)和它對應(yīng),那么就稱f:ab為從集合a到集合b的一個函數(shù)(function)記作:y=f(x),xa其中,x叫做自變量,x的取值范圍a叫做函數(shù)的定義域(domain);與x的值相對應(yīng)的y值叫做函數(shù)值,函數(shù)值的集合f(x)| xa 叫做函數(shù)的值域(range)注意: “y=f(x)”是函數(shù)符號,可以用任意的字母表示,如“y=g(x)”; 函數(shù)符號“y=f(x)”中的f(x)表示與x對應(yīng)的函數(shù)值,一個數(shù),而不是f乘x2 構(gòu)成函數(shù)的三要素:定義域、對
11、應(yīng)關(guān)系和值域3區(qū)間的概念(1)區(qū)間的分類:開區(qū)間、閉區(qū)間、半開半閉區(qū)間;(2)無窮區(qū)間;(3)區(qū)間的數(shù)軸表示4一次函數(shù)、二次函數(shù)、反比例函數(shù)的定義域和值域討論(由學(xué)生完成,師生共同分析講評)(二)典型例題1求函數(shù)定義域課本p20例1解:(略)說明: 函數(shù)的定義域通常由問題的實際背景確定,如果課前三個實例; 如果只給出解析式y(tǒng)=f(x),而沒有指明它的定義域,則函數(shù)的定義域即是指能使這個式子有意義的實數(shù)的集合; 函數(shù)的定義域、值域要寫成集合或區(qū)間的形式鞏固練習(xí):課本p22第1題2判斷兩個函數(shù)是否為同一函數(shù)課本p21例2解:(略)說明: 構(gòu)成函數(shù)三個要素是定義域、對應(yīng)關(guān)系和值域由于值域是由定義域和
12、對應(yīng)關(guān)系決定的,所以,如果兩個函數(shù)的定義域和對應(yīng)關(guān)系完全一致,即稱這兩個函數(shù)相等(或為同一函數(shù)) 兩個函數(shù)相等當(dāng)且僅當(dāng)它們的定義域和對應(yīng)關(guān)系完全一致,而與表示自變量和函數(shù)值的字母無關(guān)。鞏固練習(xí): 課本p22第2題 判斷下列函數(shù)f(x)與g(x)是否表示同一個函數(shù),說明理由?(1)f ( x ) = (x 1) 0;g ( x ) = 1(2)f ( x ) = x; g ( x ) = (3)f ( x ) = x 2;f ( x ) = (x + 1) 2(4)f ( x ) = | x | ;g ( x ) = (三)課堂練習(xí)求下列函數(shù)的定義域(1)(2)(3)(4)(5)(6)三、 歸納
13、小結(jié),強化思想從具體實例引入了函數(shù)的的概念,用集合與對應(yīng)的語言描述了函數(shù)的定義及其相關(guān)概念,介紹了求函數(shù)定義域和判斷同一函數(shù)的典型題目,引入了區(qū)間的概念來表示集合。四、 作業(yè)布置課本p28 習(xí)題12(a組) 第17題 (b組)第1題單調(diào)性與最大(?。┲嫡f課稿一、教材分析1教學(xué)內(nèi)容本節(jié)課內(nèi)容教材共分兩課時進行,這是第一課時,該課時主要學(xué)習(xí)函數(shù)的單調(diào)性的的概念,依據(jù)函數(shù)圖象判斷函數(shù)的單調(diào)性和應(yīng)用定義證明函數(shù)的單調(diào)性。2 教材的地位和作用函數(shù)單調(diào)性是高中數(shù)學(xué)中相當(dāng)重要的一個基礎(chǔ)知識點,是研究和討論初等函數(shù)有關(guān)性質(zhì)的基礎(chǔ)。掌握本節(jié)內(nèi)容不僅為今后的函數(shù)學(xué)習(xí)打下理論基礎(chǔ),還有利于培養(yǎng)學(xué)生的抽象思維能力,及
14、分析問題和解決問題的能力。3教材的重點難點關(guān)鍵教學(xué)重點:函數(shù)單調(diào)性的概念和判斷某些函數(shù)單調(diào)性的方法。明確單調(diào)性是一個局部概念.教學(xué)難點:領(lǐng)會函數(shù)單調(diào)性的實質(zhì)與應(yīng)用,明確單調(diào)性是一個局部的概念。教學(xué)關(guān)鍵:從學(xué)生的學(xué)習(xí)心理和認知結(jié)構(gòu)出發(fā),講清楚概念的形成過程4學(xué)情分析高一學(xué)生正處于以感性思維為主的年齡階段,而且思維逐步地從感性思維過渡到理性思維,并由此向邏輯思維發(fā)展,但學(xué)生思維不成熟、不嚴密、意志力薄弱,故而整個教學(xué)環(huán)節(jié)總是創(chuàng)設(shè)恰當(dāng)?shù)膯栴}情境,引導(dǎo)學(xué)生積極思考,培養(yǎng)他們的邏輯思維能力。從學(xué)生的認知結(jié)構(gòu)來看,他們只能根據(jù)函數(shù)的圖象觀察出“隨著自變量的增大函數(shù)值增大”等變化趨勢,所以在教學(xué)中要充分利用
15、好函數(shù)圖象的直觀性,發(fā)揮好多媒體教學(xué)的優(yōu)勢;由于學(xué)生在概念的掌握上缺少系統(tǒng)性、嚴謹性,在教學(xué)中注意加強. 二、目標(biāo)分析(一)知識目標(biāo): 1知識目標(biāo):理解函數(shù)單調(diào)性的概念,掌握判斷一些簡單函數(shù)的單調(diào)性的方法;了解函數(shù)單調(diào)區(qū)間的概念,并能根據(jù)函數(shù)圖象說出函數(shù)的單調(diào)區(qū)間。2能力目標(biāo):通過證明函數(shù)的單調(diào)性的學(xué)習(xí),使學(xué)生體驗和理解從特殊到一般的數(shù)學(xué)歸納推理思維方式,培養(yǎng)學(xué)生的觀察能力,分析歸納能力,領(lǐng)會數(shù)學(xué)的歸納轉(zhuǎn)化的思想方法,增加學(xué)生的知識聯(lián)系,增強學(xué)生對知識的主動構(gòu)建的能力。3情感目標(biāo):讓學(xué)生積極參與觀察、分析、探索等課堂教學(xué)的雙邊活動,在掌握知識的過程中體會成功的喜悅,以此激發(fā)求知欲望。領(lǐng)會用運動
16、變化的觀點去觀察分析事物的方法。通過滲透數(shù)形結(jié)合的數(shù)學(xué)思想,對學(xué)生進行辨證唯物主義的思想教育。(二)過程與方法培養(yǎng)學(xué)生嚴密的邏輯思維能力以及用運動變化、數(shù)形結(jié)合、分類討論的方法去分析和處理問題,以提高學(xué)生的思維品質(zhì),通過函數(shù)的單調(diào)性的學(xué)習(xí),掌握自變量和因變量的關(guān)系。通過多媒體手段激發(fā)學(xué)生學(xué)習(xí)興趣,培養(yǎng)學(xué)生發(fā)現(xiàn)問題、分析問題和解題的邏輯推理能力。三、教法與學(xué)法1教學(xué)方法在教學(xué)中,要注重展開探索過程,充分利用好函數(shù)圖象的直觀性、發(fā)揮多媒體教學(xué)的優(yōu)勢。本節(jié)課采用問答式教學(xué)法、探究式教學(xué)法進行教學(xué),教師在課堂中只起著主導(dǎo)作用,讓學(xué)生在教師的提問中自覺的發(fā)現(xiàn)新知,探究新知,并且加入激勵性的語言以提高學(xué)生
17、的積極性,提高學(xué)生參與知識形成的全過程。2學(xué)習(xí)方法自我探索、自我思考總結(jié)、歸納,自我感悟,合作交流,成為本節(jié)課學(xué)生學(xué)習(xí)的主要方式。四、過程分析本節(jié)課的教學(xué)過程包括:問題情景,函數(shù)單調(diào)性的定義引入,增函數(shù)、減函數(shù)的定義,例題分析與鞏固練習(xí),回顧總結(jié)和課外作業(yè)六個板塊。這里分別就其過程和設(shè)計意圖作一一分析。(一)問題情景:為了激發(fā)學(xué)生的學(xué)習(xí)興趣,本節(jié)課借助多媒體設(shè)計了多個生活背景問題,并就圖表和圖象所提供的信息,提出一系列問題和學(xué)生交流,激發(fā)學(xué)生的學(xué)習(xí)興趣和求知欲望,為學(xué)習(xí)函數(shù)的單調(diào)性做好鋪墊。(祥見課件)新課程理念認為:情境應(yīng)貫穿課堂教學(xué)的始終。本節(jié)課所創(chuàng)設(shè)的生活情境,讓學(xué)生親近數(shù)學(xué),感受到數(shù)學(xué)
18、就在他們的周圍,強化學(xué)生的感性認識,從而達到學(xué)生對數(shù)學(xué)的理解。讓學(xué)生在課堂的一開始就感受到數(shù)學(xué)就在我們身邊,讓學(xué)生學(xué)會用數(shù)學(xué)的眼光去關(guān)注生活。(二)函數(shù)單調(diào)性的定義引入 1幾何畫板動畫演示 ,請學(xué)生認真觀察,并回答問題:通過學(xué)生已學(xué)過的函數(shù)y=2x+4, ,的圖象的動態(tài)形式形象出x、y間的變化關(guān)系,使學(xué)生對函數(shù)單調(diào)性有感性認識。,進行比較,分析其變化趨勢。并探討、回答以下問題: 問題1、觀察下列函數(shù)圖象,從左向右看圖象的變化趨勢?問題2:你能明確說出“圖象呈上升趨勢”的意思嗎?通過學(xué)生的交流、探討、總結(jié),得到單調(diào)性的“通俗定義”:從在某一區(qū)間內(nèi)當(dāng)x的值增大時,函數(shù)值y也增大,到圖象在該區(qū)間內(nèi)呈
19、上升趨勢再到如何用x與 f(x)來描述上升的圖象?通過問題逐步向抽象的定義靠攏,將圖形語言轉(zhuǎn)化為數(shù)學(xué)符號語言。幾何畫板的靈活使用,數(shù)形有機結(jié)合,引導(dǎo)學(xué)生從圖形語言到數(shù)學(xué)符號語言的翻譯變得輕松。設(shè)計意圖:通過學(xué)生熟悉的知識引入新課題,有利于激發(fā)學(xué)生的學(xué)習(xí)興趣和學(xué)習(xí)熱情,同時也可以培養(yǎng)學(xué)生觀察、猜想、歸納的思維能力和創(chuàng)新意識,增強學(xué)生自主學(xué)習(xí)、獨立思考,由學(xué)會向會學(xué)的轉(zhuǎn)化,形成良好的思維品質(zhì)。通過學(xué)生已學(xué)過的一次y=2x+4, ,的圖象的動態(tài)形式形象地反映出x、y間的變化關(guān)系,使學(xué)生對函數(shù)單調(diào)性有感性認識。 從學(xué)生的原有認知結(jié)構(gòu)入手,探討單調(diào)性的概念,符合“最近發(fā)展區(qū)的理論”要求。從圖形、直觀認識
20、入手,研究單調(diào)性的概念,其本身就是研究、學(xué)習(xí)數(shù)學(xué)的一種方法,符合新課程的理念。(三)增函數(shù)、減函數(shù)的定義在前面的基礎(chǔ)上,讓學(xué)生討論歸納:如何使用數(shù)學(xué)語言來準確描述函數(shù)的單調(diào)性?在學(xué)生回答的基礎(chǔ)上,給出增函數(shù)的概念,同時要求學(xué)生討論概念中的關(guān)鍵詞和注意點。定義中的“當(dāng)x1x2時,都有f(x1) f(x2)”描述了y隨x的增大而增大;它刻畫了函數(shù)的單調(diào)遞增的性質(zhì),數(shù)學(xué)語言多么精練簡潔,這就是數(shù)學(xué)的魅力所在!注意:(1)函數(shù)的單調(diào)性也叫函數(shù)的增減性;(2)注意區(qū)間上所取兩點x1,x2的任意性;(3)函數(shù)的單調(diào)性是對某個區(qū)間而言的,它是一個局部概念。讓學(xué)生自已嘗試寫出減函數(shù)概念,由兩名學(xué)生板演。提出單
21、調(diào)區(qū)間的概念。設(shè)計意圖:通過給出函數(shù)單調(diào)性的嚴格定義,目的是為了讓學(xué)生更準確地把握概念,理解函數(shù)的單調(diào)性其實也叫做函數(shù)的增減性,它是對某個區(qū)間而言的,它是一個局部概念,同時明確判定函數(shù)在某個區(qū)間上的單調(diào)性的一般步驟。這樣處理,同時也是讓學(xué)生感悟、體驗學(xué)習(xí)數(shù)學(xué)感念的方法,提高其個性品質(zhì)。(四)例題分析在理解概念的基礎(chǔ)上,讓學(xué)生總結(jié)判別函數(shù)單調(diào)性的方法:圖象法和定義法。2例2證明函數(shù)在區(qū)間(-,)上是減函數(shù)。在本題的解決過程中,要求學(xué)生對照定義進行分析,明確本題要解決什么?定義要求是什么?怎樣去思考?通過自己的解決,總結(jié)證明單調(diào)性問題的一般方法。變式一:函數(shù)f(x)=-3x+b在r上是減函數(shù)嗎?為
22、什么?變式二:函數(shù)f(x)=kx+b (k0)在r上是減函數(shù)嗎?你能用幾種方法來判斷。變式三:函數(shù)f(x)=kx+b (k0且a1。此時,在數(shù)軸上把a的范圍表示出來,這樣學(xué)生很容易從數(shù)軸上的區(qū)間圖看出底數(shù)分為兩類情況進行討論。這樣為指數(shù)函數(shù)質(zhì)探究時的分類討論埋下了伏筆。問題4 通過兩個具體的特殊的指數(shù)函數(shù)圖像,來探究得出指數(shù)函數(shù)的性質(zhì)。如何使學(xué)生能經(jīng)歷從特殊到一般的過程,這種由特殊到一般再到特殊的思想的領(lǐng)會,如何完成? 教學(xué)策略:教師利用幾何畫板分別畫出了底數(shù)大于1的和底數(shù)在0到1之間的若干個不同的指數(shù)函數(shù)的圖像,展現(xiàn)不同的底數(shù)的變化時圖像的不同情況,從而讓學(xué)生經(jīng)歷由特殊到一般的過程。問題5指
23、數(shù)函數(shù)是學(xué)生在學(xué)習(xí)了函數(shù)基本概念和性質(zhì)以后接觸到得第一個具體函數(shù),學(xué)生可能找不到研究問題的方法和方向.教學(xué)策略:在這部分的安排上,我更注意學(xué)生思維習(xí)慣的養(yǎng)成,即應(yīng)從哪些方面,哪些角度去探索一個具體函數(shù)。 問題6.學(xué)生得到的性質(zhì)特點可能是雜亂的,如何梳理突出主要的性質(zhì)?教學(xué)策略:在學(xué)生識圖、用圖、合作探究的過程后,利用兩個表格的填寫,讓學(xué)生感受由圖象特征來得到函數(shù)的性質(zhì)的過程。表格主要呈現(xiàn)五個方面的性質(zhì)與特點。五、教法分析:為充分貫徹新課程理念,使教學(xué)過程真正成為學(xué)生學(xué)習(xí)過程,讓學(xué)生體驗數(shù)學(xué)發(fā)現(xiàn)和創(chuàng)造的歷程,本節(jié)課擬采用直觀教學(xué)法、啟發(fā)發(fā)現(xiàn)法、課堂討論法等教學(xué)方法。以多媒體演示為載體,啟發(fā)學(xué)生觀
24、察思考,分析討論為主,教師適當(dāng)引導(dǎo)點撥,以動手操作、合作交流,自主探究的方式來讓學(xué)生始終處在教學(xué)活動的中心。六、預(yù)期效果分析:1、教學(xué)環(huán)節(jié)環(huán)環(huán)相扣,層層深入,并充分體現(xiàn)教師與學(xué)生的交流互動,在教師的整體調(diào)控下,學(xué)生通過動手操作,動眼觀察,動腦思考,親身經(jīng)歷了知識的生成和發(fā)展過程,使學(xué)生對知識的理解逐步深入。2、簡單實例的引入,順利完成了知識的遷移,從得出指數(shù)函數(shù)的模型,符合學(xué)生認知規(guī)律的最近發(fā)展區(qū)。 3、 而作業(yè)中完成指數(shù)函數(shù)性質(zhì)的探究報告,彌補課堂時間有限探究和展示的局限性,帶領(lǐng)學(xué)生進入對指數(shù)函數(shù)更進一步的思考和研究之中,從而達到知識在課堂以外的延伸。 4、在整個教學(xué)過程中,由于學(xué)生是自覺主
25、動地發(fā)現(xiàn)結(jié)果,對所學(xué)知識應(yīng)該能夠較快接受。因此,我認為可以達到預(yù)定的教學(xué)目標(biāo)。2.8對數(shù)函數(shù)(第二課時)一、 教材的本質(zhì)、地位與作用對數(shù)函數(shù)(第二課時)是2006人教版高一數(shù)學(xué)(上冊)第二章第八節(jié)第二課時的內(nèi)容,本小節(jié)涉及對數(shù)函數(shù)相關(guān)知識,分三個課時,這里是第二課時復(fù)習(xí)鞏固對數(shù)函數(shù)圖像及性質(zhì),并用此解決三類對數(shù)比大小問題,是對已學(xué)內(nèi)容(指數(shù)函數(shù)、指數(shù)比大小、對數(shù)函數(shù))的延續(xù)和發(fā)展,同時也體現(xiàn)了數(shù)學(xué)的實用性,為后續(xù)學(xué)習(xí)起到奠定知識基礎(chǔ)、滲透方法的作用,因此本節(jié)內(nèi)容起到了一種承上啟下的作用.二、 教學(xué)目標(biāo)根據(jù)教學(xué)大綱的要求以及本節(jié)課的地位與作用,結(jié)合高一學(xué)生的認知特點確定教學(xué)目標(biāo)如下:學(xué)習(xí)目標(biāo):1
26、、復(fù)習(xí)鞏固對數(shù)函數(shù)的圖像及性質(zhì)2、運用對數(shù)函數(shù)的性質(zhì)比較兩個數(shù)的大小能力目標(biāo): 1、 培養(yǎng)學(xué)生運用圖形解決問題的意識即數(shù)形結(jié)合能力 2、學(xué)生運用已學(xué)知識,已有經(jīng)驗解決新問題的能力 3、 探索出方法,有條理闡述自己觀點的能力 德育目標(biāo): 培養(yǎng)學(xué)生勤于思考、獨立思考、合作交流等良好的個性品質(zhì)三、 教材的重點及難點對數(shù)比大小發(fā)揮的是承上啟下的作用,對前一是復(fù)習(xí)鞏固對數(shù)函數(shù)的圖像和性質(zhì),二是對指數(shù)中比大小問題的數(shù)學(xué)思想及方法的再次體現(xiàn)和應(yīng)用,對后為解對數(shù)方程及對數(shù)不等式奠定基礎(chǔ)。所以確定本節(jié)課重點:運用對數(shù)函數(shù)圖像性質(zhì)比較兩數(shù)的大小教學(xué)中將在以下2個環(huán)節(jié)中突出教學(xué)重點:1、 利用學(xué)生預(yù)習(xí)后的心得交流,
27、資源共享,互補不足2、 通過適當(dāng)?shù)木毩?xí),加強對解題方法的掌握及原理的理解另一方面,學(xué)生在預(yù)習(xí)后上課的情況下,對于課本上知識有了一定的認識,但本節(jié)課教師要補充第三類比大小問題同真異底型,對于學(xué)生以小組為單位自主探究有一定的挑戰(zhàn)性。 所以確定本節(jié)課難點:同真異底的對數(shù)比大小教學(xué)中會在以下3個方面突破教學(xué)難點:1、 教師調(diào)整角色,讓學(xué)生成為學(xué)習(xí)的主人,教師在其中起引 導(dǎo)作用即可。2、 小組合作探索新問題時,注重生生合作、師生互動,適時用語言鼓勵學(xué)生,增強學(xué)生參與討論的自信。3、 本節(jié)課采用多媒體輔助教學(xué),節(jié)省時間,加快課程進度,增強了直觀形象性。四、 學(xué)生學(xué)情分析長處:高一學(xué)生經(jīng)過幾年的數(shù)學(xué)學(xué)習(xí),已
28、具備一定的數(shù)學(xué)素養(yǎng),對于已學(xué)知識或用過的數(shù)學(xué)思想、方法有一定的應(yīng)用能力及應(yīng)用意識,對于本節(jié)課而言,從知識上說,對數(shù)函數(shù)的圖像和性質(zhì)剛剛學(xué)過,本節(jié)課是知識的應(yīng)用,從數(shù)學(xué)能力上說,指數(shù)比大小問題的解題思想和方法在這可借鑒,另外數(shù)形結(jié)合能力、小結(jié)概括能力、特殊到一般歸納能力已具備一點。學(xué)生可能遇到的困難:本節(jié)課從教學(xué)內(nèi)容上來看,第三類對數(shù)比大小是課本以外補充的內(nèi)容,沒有預(yù)習(xí)心得,讓學(xué)生在課堂中快速通過合作探究來完成解題思路的構(gòu)建,有一定的挑戰(zhàn)性,從學(xué)生能力上來看,探索出方法,有條理闡述自己觀點的能力還需加強鍛煉,知識之間的聯(lián)系認識上還顯不足。五、 教法特點新課程強調(diào)教師要調(diào)整自己的角色,改變傳統(tǒng)的教
29、育方式,在教育方式上,以學(xué)生為中心,讓學(xué)生成為學(xué)習(xí)的主人,教師在其中起引導(dǎo)作用即可?;诖?,本節(jié)課遵循此原則重點采用問題探究和啟發(fā)引導(dǎo)式的教學(xué)方法。從預(yù)習(xí)交流心得出發(fā),到探索新問題,再到題后的回顧總結(jié),一切以學(xué)生為中心,處處體現(xiàn)學(xué)生的主體地位,讓學(xué)生多說、多分析、多思考、多總結(jié),引導(dǎo)學(xué)生運用自己的語言闡述觀點,加強理解,在生生合作,師生互動中解決問題,為提高學(xué)生分析問題、解決問題能力打下基礎(chǔ)。本節(jié)課采用多媒體輔助教學(xué),節(jié)省時間,加快課程進度,增強了直觀形象性。六、 教學(xué)過程分析1、 課件展示本節(jié)課學(xué)習(xí)目標(biāo)設(shè)計意圖:明確任務(wù),激發(fā)興趣2、 溫故知新(已填表形式復(fù)習(xí)對數(shù)函數(shù)的圖像和性質(zhì))設(shè)計意圖:
30、復(fù)習(xí)已學(xué)知識和方法,為學(xué)生形成知識間的聯(lián)系和框架建立平臺,并為下一步的應(yīng)用打下基礎(chǔ)。3、 預(yù)習(xí)后心得交流1) 同底對數(shù)比大小2) 既不同底數(shù),也不同真數(shù)的對數(shù)比大小以課本例題為例,交流解題思路,題后總結(jié)此類型比大小問題的一般方法,而后通過練習(xí)加強理解鞏固設(shè)計意圖:通過學(xué)生的預(yù)習(xí),自己總結(jié)方法及此方法適用的題型,有條理的闡述自己的學(xué)習(xí)心得,老師只需起引導(dǎo)作用,引導(dǎo)學(xué)生從題目表面上升到題目的實質(zhì),從而找到解決問題的有效方法。4、 合作探究同真異底型的對數(shù)比大小 以例3為例,學(xué)生分組合作探究解題方法,預(yù)計兩種:一是利用換底公式將此類型轉(zhuǎn)化為同底異真型,利用之前總結(jié)的方法解決此問題。二是利用具體對數(shù)的
31、大小關(guān)系探究出不同底對數(shù)函數(shù)在同一直角坐標(biāo)系中的圖像,以此來解決此類型比大小問題。設(shè)計意圖:這一部分是本節(jié)課的難點,探究中充分發(fā)揮學(xué)生的主動性,培養(yǎng)主動學(xué)習(xí)的意識,同時也鍛煉學(xué)生各方面能力的很好機會,為以后的探究學(xué)習(xí)積累經(jīng)驗和方法,充分體現(xiàn)“授之以魚,不如授之以漁”的教學(xué)理念。另外數(shù)學(xué)問題的解決僅僅只是一半,更重要的是解題之后的回顧,即反思,如果沒有了反思,他們就錯過了解題的一次重要而有效益的方面。因此,本題解決后,讓學(xué)生反思明白,要想利用性質(zhì)解決問題,關(guān)鍵要做到“腦中有圖”,以“形”促“數(shù)”。5、 小結(jié)以學(xué)生自主小結(jié)的方式總結(jié)本節(jié)課得收獲,教師可引導(dǎo)小結(jié)三個方面:所學(xué)內(nèi)容、數(shù)學(xué)思想、數(shù)學(xué)方法
32、6、 思考題以2009高考題為例,讓學(xué)生學(xué)以致用,增強數(shù)學(xué)學(xué)習(xí)興趣。7、 作業(yè)包括兩個方面:1、書寫作業(yè) 2、下節(jié)課前的預(yù)習(xí)作業(yè)七、 教學(xué)效果分析通過本節(jié)課的教學(xué)實例來看,這種通過課本內(nèi)容預(yù)習(xí),而后課堂交流學(xué)習(xí)成果的方法效果不錯,既能很好的完成教學(xué)任務(wù),又能充分發(fā)揮學(xué)生學(xué)習(xí)的主動性。在自主探究時,學(xué)生分組討論過程中,我參與小組討論,對有能力的小組,在探究出一種方法后,可鼓勵完成更多的方法探究,對于能力較弱的小組,可給予適當(dāng)?shù)奶崾?,使學(xué)生都能動起來,課堂都有所收獲,增強學(xué)生自信。另外,對于學(xué)生的總結(jié)回答,可能會比較慢,我一定會耐心聽,及時鼓勵,給予學(xué)生微笑和語言的鼓勵,效果很好。在小結(jié)環(huán)節(jié)中,對
33、于高一學(xué)生自己小結(jié)的方法,是我一直的教學(xué)嘗試,由于只訓(xùn)練了半學(xué)期,學(xué)生只能達到小結(jié)知識的程度,在以后的訓(xùn)練中還會加入數(shù)學(xué)思想、數(shù)學(xué)方法的小結(jié)內(nèi)容,使這些數(shù)學(xué)名詞讓學(xué)生不再覺得抽象,而是變成具體的,可操作的、具體的解題工具。 3.1.1方程的根與函數(shù)的零點一、本課數(shù)學(xué)內(nèi)容的本質(zhì)、地位、作用分析普通高中課標(biāo)教材必修1共安排了三章內(nèi)容,第一章是集合與函數(shù)的概念,第二章是基本初等函數(shù)(),第三章是函數(shù)的應(yīng)用。第三章編排了兩塊內(nèi)容,第一部分是函數(shù)與方程,第二部分是函數(shù)模型及其應(yīng)用。本節(jié)課方程的根與函數(shù)的零點,正是在這種建立和運用函數(shù)模型的大背景下展開的。本節(jié)課的主要教學(xué)內(nèi)容是函數(shù)零點的定義和函數(shù)零點存在
34、的判定依據(jù),這兩者顯然是為下節(jié)“用二分法求方程近似解”這一“函數(shù)的應(yīng)用”服務(wù)的,同時也為后續(xù)學(xué)習(xí)的算法埋下伏筆。由此可見,它起著承上啟下的作用,與整章、整冊綜合成一個整體,學(xué)好本節(jié)意義重大。 函數(shù)在數(shù)學(xué)中占據(jù)著不可替代的核心地位,根本原因之一在于函數(shù)與其他知識具有廣泛的聯(lián)系,而函數(shù)的零點就是其中的一個鏈結(jié)點,它從不同的角度,將數(shù)與形,函數(shù)與方程有機地聯(lián)系在一起。方程本身就是函數(shù)的一部分,用函數(shù)的觀點來研究方程,就是將局部放入整體中研究,進而對整體和局部都有一個更深層次的理解,并學(xué)會用聯(lián)系的觀點解決問題,為后面函數(shù)與不等式和數(shù)列等其他知識的聯(lián)系奠定基礎(chǔ)。二、教學(xué)目標(biāo)分析本節(jié)內(nèi)容包含三大知識點:一
35、、函數(shù)零點的定義;二、方程的根與函數(shù)零點的等價關(guān)系;三、零點存在性定理。結(jié)合本節(jié)課引入三大知識點的方法,設(shè)定本節(jié)課的知識與技能目標(biāo)如下:1.結(jié)合方程根的幾何意義,理解函數(shù)零點的定義;2.結(jié)合零點定義的探究,掌握方程的實根與其相應(yīng)函數(shù)零點之間的等價關(guān)系;3.結(jié)合幾類基本初等函數(shù)的圖象特征,掌握判斷函數(shù)的零點個數(shù)和所在區(qū)間的方法.本節(jié)課是學(xué)生在學(xué)習(xí)了函數(shù)的性質(zhì),具備了初步的數(shù)形結(jié)合知識的基礎(chǔ)上,通過對特殊函數(shù)圖象的分析進行展開的,是培養(yǎng)學(xué)生“化歸與轉(zhuǎn)化思想”,“ 數(shù)形結(jié)合思想”, “函數(shù)與方程思想”的優(yōu)質(zhì)載體。結(jié)合本節(jié)課教學(xué)主線的設(shè)計,設(shè)定本節(jié)課的過程與方法目標(biāo)如下:1.通過化歸與轉(zhuǎn)化思想的引導(dǎo),
36、培養(yǎng)學(xué)生從已有認知結(jié)構(gòu)出發(fā),尋求解決棘手問題方法的習(xí)慣;2.通過數(shù)形結(jié)合思想的滲透,培養(yǎng)學(xué)生主動應(yīng)用數(shù)學(xué)思想的意識;3.通過習(xí)題與探究知識的相關(guān)性設(shè)置,引導(dǎo)學(xué)生深入探究得出判斷函數(shù)的零點個數(shù)和所在區(qū)間的方法;4.通過對函數(shù)與方程思想的不斷剖析,促進學(xué)生對知識靈活應(yīng)用的能力。 由于本節(jié)課將以教師引導(dǎo),學(xué)生探究為主體形式,故設(shè)定本節(jié)課的情感、態(tài)度與價值觀目標(biāo)如下:1.讓學(xué)生體驗化歸與轉(zhuǎn)化、數(shù)形結(jié)合、函數(shù)與方程這三大數(shù)學(xué)思想在解決數(shù)學(xué)問題時的意義與價值;2.培養(yǎng)學(xué)生鍥而不舍的探索精神和嚴密思考的良好學(xué)習(xí)習(xí)慣。3.使學(xué)生感受學(xué)習(xí)、探索發(fā)現(xiàn)的樂趣與成功感。三、教學(xué)問題診斷學(xué)生具備的認知基礎(chǔ):1.基本初等
37、函數(shù)的圖象和性質(zhì);2.一元二次方程的根和相應(yīng)函數(shù)圖象與x軸的聯(lián)系;3.將數(shù)與形相結(jié)合轉(zhuǎn)化的意識。學(xué)生欠缺的實際能力:1.主動應(yīng)用數(shù)形結(jié)合思想解決問題的意識還不強;2.將未知問題已知化,將復(fù)雜問題簡單化的化歸意識淡??;3.從直觀到抽象的概括總結(jié)能力還不夠;4.概念的內(nèi)涵與外延的探究意識有待提高。對本節(jié)課的教學(xué),教材是利用一組一元二次方程和二次函數(shù)的關(guān)系來引入函數(shù)零點的。這樣處理,主要是想讓學(xué)生在原有二次函數(shù)的認知基礎(chǔ)上,使其知識得到自然的發(fā)生發(fā)展。理解了像二次函數(shù)這樣簡單的函數(shù)零點,再來理解其他復(fù)雜的函數(shù)零點就會容易一些。但學(xué)生對如何解一元二次方程以及二次函數(shù)的圖象早就熟練了,這樣的引入過程使學(xué)生感到平淡,激發(fā)不起他們的興趣,他們對零點的理解也只會浮于表面,也無法使其體會引入函數(shù)零點的必要性,理解不了方程根存在的本質(zhì)原因是零點的存在。教材是通過由直觀到抽象的過程,才得到判斷函數(shù)y=f(x)在(a,b)內(nèi)有零點的一種條件的,如果不能有效地對該過程進行引導(dǎo),容易出現(xiàn)學(xué)生被動接受,盲目記
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 企業(yè)核心機密保護合同模板
- 市場營銷合作合同模板:品牌推廣專用
- 數(shù)據(jù)外包服務(wù)合同轉(zhuǎn)讓合同
- 標(biāo)準勞動合同解除樣本
- 加盟連鎖店經(jīng)營合同樣本
- 合同約定催款函格式專業(yè)版
- 建筑物拆除的施工安全管理考核試卷
- 機床制造中的人力資源管理策略考核試卷
- 農(nóng)業(yè)科學(xué)中的農(nóng)村居民收入與消費考核試卷
- 安全網(wǎng)絡(luò)數(shù)據(jù)安全審計流程自動化考核試卷
- 綏芬河市2025年上半年招考事業(yè)單位專業(yè)人員易考易錯模擬試題(共500題)試卷后附參考答案
- 小學(xué)數(shù)學(xué)新課程標(biāo)準(教育部2024年制訂)
- 2025復(fù)工復(fù)產(chǎn)安全教育培訓(xùn)
- 2024年叉車司機車輛基本操作知識考試題庫及答案(共70題)
- 工業(yè)統(tǒng)計知識培訓(xùn)
- 2025年臨沂科技職業(yè)學(xué)院高職單招語文2018-2024歷年參考題庫頻考點含答案解析
- 保密協(xié)議范本
- 2025年臨床醫(yī)師定期考核必考復(fù)習(xí)題庫及答案(1080題)
- 電梯維保知識培訓(xùn)課件
- CNAS-R02:2023公正性和保密規(guī)則
- 2024-2030年中國骨傳導(dǎo)植入式助聽器和耳機行業(yè)應(yīng)用態(tài)勢與需求前景預(yù)測報告
評論
0/150
提交評論