




版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、第一節(jié)第一節(jié) 集集 合合 完全與教材同步,主干知識(shí)精心提煉。素質(zhì)和能力源于基完全與教材同步,主干知識(shí)精心提煉。素質(zhì)和能力源于基 礎(chǔ),基礎(chǔ)知識(shí)是耕作礎(chǔ),基礎(chǔ)知識(shí)是耕作“半畝方塘半畝方塘”的工具。視角從【考綱點(diǎn)擊】的工具。視角從【考綱點(diǎn)擊】 中切入,思維從【考點(diǎn)梳理】中拓展,智慧從【即時(shí)應(yīng)用】中中切入,思維從【考點(diǎn)梳理】中拓展,智慧從【即時(shí)應(yīng)用】中 升華??茖W(xué)的訓(xùn)練式梳理峰回路轉(zhuǎn),別有洞天。去盡情暢游吧,升華。科學(xué)的訓(xùn)練式梳理峰回路轉(zhuǎn),別有洞天。去盡情暢游吧, 它會(huì)帶你走進(jìn)不一樣的精彩!它會(huì)帶你走進(jìn)不一樣的精彩! 三年三年3434考考 高考指數(shù)高考指數(shù): : 1.1.了解集合的含義、元素與集合的了
2、解集合的含義、元素與集合的“屬于屬于”關(guān)系關(guān)系. . 2.2.能用自然語(yǔ)言、圖形語(yǔ)言、集合語(yǔ)言能用自然語(yǔ)言、圖形語(yǔ)言、集合語(yǔ)言( (列舉法或描述法列舉法或描述法) )描述描述 不同的具體問(wèn)題不同的具體問(wèn)題. . 3.3.理解集合之間包含與相等的含義理解集合之間包含與相等的含義, ,能識(shí)別給定集合的子集能識(shí)別給定集合的子集. . 4.4.在具體情境中在具體情境中, ,了解全集與空集的含義了解全集與空集的含義. . 5.5.理解兩個(gè)集合的并集與交集的含義理解兩個(gè)集合的并集與交集的含義, ,會(huì)求兩個(gè)簡(jiǎn)單集合的并會(huì)求兩個(gè)簡(jiǎn)單集合的并 集與交集集與交集. . 6.6.理解在給定集合中一個(gè)子集的補(bǔ)集的含義
3、理解在給定集合中一個(gè)子集的補(bǔ)集的含義, ,會(huì)求給定子集的會(huì)求給定子集的 補(bǔ)集補(bǔ)集. . 7.7.能使用能使用VennVenn圖表達(dá)集合的關(guān)系及運(yùn)算圖表達(dá)集合的關(guān)系及運(yùn)算. . 1.1.集合的運(yùn)算是高考考查的重點(diǎn)集合的運(yùn)算是高考考查的重點(diǎn). . 2.2.常與函數(shù)、方程、不等式交匯,考查學(xué)生借助常與函數(shù)、方程、不等式交匯,考查學(xué)生借助VennVenn圖、數(shù)軸圖、數(shù)軸 等工具解決集合的運(yùn)算問(wèn)題的能力,要求學(xué)生具備數(shù)形結(jié)合的等工具解決集合的運(yùn)算問(wèn)題的能力,要求學(xué)生具備數(shù)形結(jié)合的 思想意識(shí)思想意識(shí). . 3.3.以選擇題、填空題的形式考查,屬容易題以選擇題、填空題的形式考查,屬容易題. . 1.1.集合
4、的基本概念集合的基本概念 (1)(1)元素的特性元素的特性 _ _ _ _ _ 屬于屬于 記為記為_(kāi) 不屬于不屬于 記為記為_(kāi) _ 確定性確定性互異性互異性無(wú)序性無(wú)序性 (2)(2)集合與元素的關(guān)系集合與元素的關(guān)系 (3)(3)常見(jiàn)集合的符號(hào)常見(jiàn)集合的符號(hào) (4)(4)集合的表示方法集合的表示方法 _ _ _ _ _ 列舉法列舉法 描述法描述法VennVenn圖法圖法 自然數(shù)集自然數(shù)集 _ N N* *或或N N+ + Z ZQ Q 正整數(shù)集正整數(shù)集整數(shù)集整數(shù)集有理數(shù)集有理數(shù)集實(shí)數(shù)集實(shí)數(shù)集 R R _ _ N N 【即時(shí)應(yīng)用【即時(shí)應(yīng)用】 (1)(1)判斷下列結(jié)論是否正確判斷下列結(jié)論是否正確.(
5、.(在后面的括號(hào)內(nèi)填在后面的括號(hào)內(nèi)填或或) ) Z=Z=全體整數(shù)全體整數(shù) ( ) ( ) R=R=實(shí)數(shù)集實(shí)數(shù)集=R ( )=R ( ) (1(1,2)=12)=1,2 ( )2 ( ) 11,2=22=2,1 ( )1 ( ) (2)(2)若集合若集合A=1A=1,a a2 2 ,則實(shí)數(shù),則實(shí)數(shù)a a不能取的值為不能取的值為_(kāi)._. 【解析【解析】(1)(1)不正確,正確寫法為不正確,正確寫法為Z=Z=整數(shù)整數(shù); 不正確,正確寫法為不正確,正確寫法為R=R=實(shí)數(shù)實(shí)數(shù) ;而;而RR表示以實(shí)數(shù)集為元素表示以實(shí)數(shù)集為元素 的集合;的集合; 不正確,集合不正確,集合(1(1,2)2)表示元素為點(diǎn)表示元
6、素為點(diǎn)(1(1,2)2)的點(diǎn)的集合,而的點(diǎn)的集合,而 11,22則表示元素為數(shù)則表示元素為數(shù)1 1,2 2的數(shù)的集合,它們是不相等的;的數(shù)的集合,它們是不相等的; 正確,根據(jù)集合中元素的無(wú)序性可知正確,根據(jù)集合中元素的無(wú)序性可知11,2=22=2,1.1. (2)(2)由由a a2 21,1,得得aa1.1. 答案:答案:(1)(1) (2)(2)1 1 2.2.集合間的基本關(guān)系集合間的基本關(guān)系 (1)(1)基本關(guān)系基本關(guān)系 A BA B或或B AB A 文字語(yǔ)言文字語(yǔ)言符號(hào)語(yǔ)言符號(hào)語(yǔ)言 相等相等 子集子集 真子集真子集 A A中任意一個(gè)元素均為中任意一個(gè)元素均為B B中中 的元素的元素, ,
7、且且B B中至少有一個(gè)中至少有一個(gè) 元素不是元素不是A A中的元素中的元素 A A中任意一個(gè)元素均為中任意一個(gè)元素均為B B 中的元素中的元素 集合集合A A與集合與集合B B中的所有中的所有 元素相同元素相同 關(guān)系關(guān)系 表示表示 A=BA=B A BA B或或B AB A (2)(2)空集空集 規(guī)定:空集是規(guī)定:空集是_的子集的子集, ,是任何是任何_的真子的真子 集,即集,即 A A,_._. 任何集合任何集合非空集合非空集合 B(B) B(B) 【即時(shí)應(yīng)用【即時(shí)應(yīng)用】 (1)(1)滿足滿足11,2 2,3 M 13 M 1,2 2,3 3,4 4,5 5,66的集合的集合M M的個(gè)數(shù)是的
8、個(gè)數(shù)是 _._. (2)(2)若若A=x|xA=x|x22或或x1,B=x|ax1,B=x|axa+1,x0,B=x|y+x-60,B=x|y= ,= ,則則AB=_.AB=_. (3)(3)已知全集已知全集U=R,U=R,集合集合A=x|-2x3,B=x|xA=x|-2x3,B=x|x-1-1或或x x4,4,那那 么集合么集合A( B)A( B)等于等于_._. 3x U 【解析【解析】(1)(1)由題意知由題意知M=2,3M=2,3或或M=1M=1,2 2,3,3,共共2 2個(gè)個(gè). . (2)A=x|x(2)A=x|x-32,B=x|x3,x2,B=x|x3, AB=x|xAB=x|x-
9、3-3或或2x3.2x3. (3) B=x|-1x4,(3) B=x|-1x4, A( B)=x|-1x3.A( B)=x|-1x3. 答案:答案:(1)2 (2)x|x-3(1)2 (2)x|x-3或或2x320)0 x|y=f(xx|y=f(x) y|y=f(xy|y=f(x) (x,y)|y=f(x(x,y)|y=f(x) 集合的集合的 意義意義 方程方程f(xf(x)=)= 0 0的解集的解集 不等式不等式f(xf(x)0)0 的解集的解集 函數(shù)函數(shù)y=f(xy=f(x) ) 的定義域的定義域 函數(shù)函數(shù)y=f(xy=f(x) ) 的值域的值域 函數(shù)函數(shù)y=f(xy=f(x) ) 圖像上
10、的點(diǎn)集圖像上的點(diǎn)集 【例【例1 1】(1)(1)設(shè)設(shè)P P、Q Q為兩個(gè)非空實(shí)數(shù)集合,定義集合為兩個(gè)非空實(shí)數(shù)集合,定義集合P+Q=P+Q= a+b|aP,bQa+b|aP,bQ,若若P=0,2,5,Q=1,2,6,P=0,2,5,Q=1,2,6,則則P+QP+Q中元素的個(gè)中元素的個(gè) 數(shù)是數(shù)是( )( ) (A)9 (B)8 (C)7 (D)6(A)9 (B)8 (C)7 (D)6 (2)(2)已知已知-3A=a-2-3A=a-2,2a2a2 2+5a+5a,1212,則,則a=_.a=_. 【解題指南【解題指南】(1)(1)從從P+QP+Q的定義入手,可列表求出的定義入手,可列表求出a+ba+
11、b的值的值. . (2)-3(2)-3是是A A中的元素,說(shuō)明中的元素,說(shuō)明A A中的三個(gè)元素有一個(gè)等于中的三個(gè)元素有一個(gè)等于-3-3,可分,可分 類討論類討論, ,最后需要檢驗(yàn)最后需要檢驗(yàn). . 【規(guī)范解答【規(guī)范解答】(1)(1)選選B.B.根據(jù)新定義將根據(jù)新定義將a+ba+b的值列表如下:的值列表如下: 由集合中元素的互異性知由集合中元素的互異性知P+QP+Q中有中有8 8個(gè)元素,故選個(gè)元素,故選B.B. 0 02 25 5 1 11 13 36 6 2 22 24 47 7 6 66 68 81111 a a a+ba+b b b (2)-3A,a-2=-3(2)-3A,a-2=-3或或
12、2a2a2 2+5a=-3+5a=-3, a=-1a=-1或或a=a= 當(dāng)當(dāng)a=-1a=-1時(shí),時(shí),a-2=2aa-2=2a2 2+5a=-3,+5a=-3,不合題意不合題意; ; 當(dāng)當(dāng)a= a= 時(shí),時(shí),A= -3A= -3,12,12,符合題意符合題意, , 故故a=a= 答案:答案: 3 . 2 3 2 7 2 , 3 . 2 3 2 【互動(dòng)探究【互動(dòng)探究】若本例若本例(2)(2)改為改為: :已知已知A=a-2,2aA=a-2,2a2 2+5a,12,+5a,12,則則a a的的 取值范圍為取值范圍為_(kāi)._. 【解析【解析】根據(jù)集合元素的特性,則需滿足以下式子:根據(jù)集合元素的特性,則需
13、滿足以下式子: 解得:解得:a-4a-4且且a-1a-1且且a a 且且a14.a14. 答案:答案:aR|a-4aR|a-4且且a-1a-1且且a a 且且a14a14 2 2 a22a5a a212, 2a5a12 3 2 3 2 【反思【反思感悟感悟】1.1.求解本例易出現(xiàn)的錯(cuò)誤就是求出答案后,不求解本例易出現(xiàn)的錯(cuò)誤就是求出答案后,不 進(jìn)行檢驗(yàn),忽視了元素的互異性進(jìn)行檢驗(yàn),忽視了元素的互異性. . 2.2.研究一個(gè)集合研究一個(gè)集合, ,首先要看集合中的代表元素首先要看集合中的代表元素, ,然后再看元素的然后再看元素的 限制條件限制條件, ,當(dāng)集合用描述法表示時(shí)當(dāng)集合用描述法表示時(shí), ,注
14、意弄清其元素表示的意義注意弄清其元素表示的意義 是什么是什么. . 【變式備選【變式備選】(2012(2012濰坊模擬濰坊模擬) )已知集合已知集合A=x|xA=x|x2 2-2x+a0-2x+a0, 且且1 A1 A,則實(shí)數(shù),則實(shí)數(shù)a a的取值范圍是的取值范圍是( )( ) (A)(-,1)(A)(-,1)(B)(-,1(B)(-,1 (C)(C)1,+)1,+)(D)(0,+)(D)(0,+) 【解析【解析】選選B.B.當(dāng)當(dāng)1A1A時(shí),把時(shí),把1 1代入代入x x2 2-2x+a0-2x+a0成立,成立, 即即1-2+a01-2+a0,a1,1 Aa1,1 A時(shí),時(shí),a1.a1. 集合間的
15、基本關(guān)系集合間的基本關(guān)系 【方法點(diǎn)睛【方法點(diǎn)睛】1.1.解決集合相等問(wèn)題的一般思路解決集合相等問(wèn)題的一般思路 若兩個(gè)集合相等若兩個(gè)集合相等, ,首先分析已知元素在另一個(gè)集合中與哪一個(gè)首先分析已知元素在另一個(gè)集合中與哪一個(gè) 元素相等元素相等, ,有幾種情況等有幾種情況等, ,然后列方程組求解然后列方程組求解, ,要注意挖掘題目要注意挖掘題目 中的隱含條件中的隱含條件. . 2.2.判斷兩集合關(guān)系的方法判斷兩集合關(guān)系的方法 判斷兩集合的關(guān)系常用兩種方法:一是化簡(jiǎn)集合,從表達(dá)式中判斷兩集合的關(guān)系常用兩種方法:一是化簡(jiǎn)集合,從表達(dá)式中 尋找兩集合間的關(guān)系;二是用列舉法表示各集合,從元素中尋尋找兩集合間
16、的關(guān)系;二是用列舉法表示各集合,從元素中尋 找關(guān)系找關(guān)系. . 【提醒【提醒】題目中若有條件題目中若有條件B BA A,則應(yīng)分,則應(yīng)分B=B= 和和B B兩種情況討兩種情況討 論論. . 【例【例2 2】(1)(1)已知已知aR,bRaR,bR, ,若若a, 1=aa, 1=a2 2,a+b,0,a+b,0,則則 a a2 013 2 013+b +b2 2 013 013=_. =_. (2)(2)已知集合已知集合A=x|-2x7,B=x|m+1x2m-1,A=x|-2x7,B=x|m+1x2m-1,若若B BA,A,則實(shí)則實(shí) 數(shù)數(shù)m m的取值范圍是的取值范圍是_._. (3)(3)設(shè)設(shè)A=
17、x|xA=x|x2 2-8x+15=0,B=x|ax-1=0,-8x+15=0,B=x|ax-1=0,若若B BA A,求實(shí)數(shù),求實(shí)數(shù)a a組成組成 的集合的集合C.C. b , a 【解題指南【解題指南】(1)(1)由兩集合相等及由兩集合相等及a0a0知,知,b=0,b=0,從而從而a a2 2=1.=1. (2)(2)分分B=B=與與BB兩種情況討論兩種情況討論. . (3)(3)化簡(jiǎn)集合化簡(jiǎn)集合A A,結(jié)合方程,結(jié)合方程ax-1=0ax-1=0的解的情況,分的解的情況,分B=B=和和BB兩兩 種情況討論種情況討論. . 【規(guī)范解答【規(guī)范解答】(1)(1)由題意知,由題意知,a0, =0,
18、b=0.a0, =0,b=0. a,0,1=a,0,aa,0,1=a,0,a2 2,a,a2 2=1=1,即,即a=a=1.1. 經(jīng)驗(yàn)證當(dāng)經(jīng)驗(yàn)證當(dāng)a=1a=1時(shí)不合題意,當(dāng)時(shí)不合題意,當(dāng)a=-1a=-1時(shí),符合題意時(shí),符合題意. . a=-1,aa=-1,a2 2 013 013+b +b2 2 013 013=(-1) =(-1)2 013 2 013+0 +02 2 013 013=-1. =-1. 答案:答案:-1-1 (2)(2)當(dāng)當(dāng)B=B=時(shí)時(shí), ,有有m+12m-1,m+12m-1,得得m2,m2, 當(dāng)當(dāng)BB時(shí)時(shí), ,有有 綜上綜上:m4.:m4. 答案:答案:m4m4 b a m
19、12 2m 172m4, m1 2m 1 ,解得 (3)A=3,5,B(3)A=3,5,BA,A, 當(dāng)當(dāng)B=B=時(shí),方程時(shí),方程ax-1=0ax-1=0無(wú)解,則無(wú)解,則a=0,a=0,此時(shí)有此時(shí)有B BA;A;當(dāng)當(dāng)BB時(shí),時(shí), 則則a0,a0,由由ax-1=0ax-1=0,得,得x=x= 即即 3,5, =33,5, =3或或 =5,=5, a= a= 或或a= C=0, .a= C=0, . 1 . a 1 a 1 a 1 a 1 3 1 , 5 1 1 , 5 3 【互動(dòng)探究【互動(dòng)探究】若本例若本例(3)(3)條件不變條件不變. . 當(dāng)集合當(dāng)集合B AB A時(shí),試求實(shí)數(shù)時(shí),試求實(shí)數(shù)a a的
20、值的值. . 當(dāng)當(dāng)AB=3AB=3時(shí),試求實(shí)數(shù)時(shí),試求實(shí)數(shù)a a組成的集合組成的集合C.C. 【解析【解析】若若B AB A,則,則B=B=,33,55 a=0,a=0, 若若AB=3AB=3,則,則B=3,B=3, a= C= .a= C= . 1 1 , . 3 5 1 , 3 1 3 【反思【反思感悟感悟】1.1.解答本例解答本例(2)(2),(3)(3)時(shí),易忽視時(shí),易忽視B=B=這種情況,這種情況, 使解題不完整,造成失分使解題不完整,造成失分. . 2.2.已知兩集合間的關(guān)系求參數(shù)時(shí),關(guān)鍵是將兩集合間的關(guān)系轉(zhuǎn)已知兩集合間的關(guān)系求參數(shù)時(shí),關(guān)鍵是將兩集合間的關(guān)系轉(zhuǎn) 化為元素間的關(guān)系,進(jìn)
21、而轉(zhuǎn)化為參數(shù)滿足的關(guān)系化為元素間的關(guān)系,進(jìn)而轉(zhuǎn)化為參數(shù)滿足的關(guān)系. .求解時(shí)可合求解時(shí)可合 理利用數(shù)軸、理利用數(shù)軸、VennVenn圖幫助分析圖幫助分析. . 3.3.子集與真子集的區(qū)別與聯(lián)系:集合子集與真子集的區(qū)別與聯(lián)系:集合A A的真子集一定是其子集,的真子集一定是其子集, 而集合而集合A A的子集不一定是其真子集;若集合的子集不一定是其真子集;若集合A A有有n n個(gè)元素,則其個(gè)元素,則其 子集個(gè)數(shù)為子集個(gè)數(shù)為2 2n n, ,真子集個(gè)數(shù)為真子集個(gè)數(shù)為2 2n n-1.-1. 【變式備選【變式備選】 1.1.設(shè)集合設(shè)集合A=(x,y)|4x+y=6,B=(x,y)|3x+2y=7,A=(
22、x,y)|4x+y=6,B=(x,y)|3x+2y=7,則滿足則滿足 C C(AB)(AB)的集合的集合C C的個(gè)數(shù)是的個(gè)數(shù)是( )( ) (A)0 (B)1 (C)2 (D)3(A)0 (B)1 (C)2 (D)3 【解析【解析】選選C.AB=(x,yC.AB=(x,y)| =(1)| =(1,2),C=2),C=或或 C=(1,2),C=(1,2),共共2 2個(gè)個(gè). . 4xy6 3x2y7 2.2.已知集合已知集合A=x|0ax+15A=x|0ax+15,集合,集合B=x| x2.B=x| x2. (1)(1)若若A AB B,求實(shí)數(shù),求實(shí)數(shù)a a的取值范圍;的取值范圍; (2)(2)若
23、若B BA A,求實(shí)數(shù),求實(shí)數(shù)a a的取值范圍的取值范圍; ; (3)A(3)A、B B能否相等?若能,求出能否相等?若能,求出a a的值;若不能,說(shuō)明理由的值;若不能,說(shuō)明理由. . 1 2 【解析【解析】A A中不等式的解集應(yīng)分三種情況討論中不等式的解集應(yīng)分三種情況討論: : 若若a=0,a=0,則則A=RA=R; 若若a0,a0,則則A=x| x A=x| x0,a0,則則A=x| x .A=x| x . (1)(1)當(dāng)當(dāng)a=0a=0時(shí),若時(shí),若A AB B,此種情況不存在,此種情況不存在. . 當(dāng)當(dāng)a0a0a0時(shí),若時(shí),若A AB B,如圖,如圖, 綜上知,當(dāng)綜上知,當(dāng)A AB B時(shí),
24、時(shí),a-8a-8或或a2.a2. 41 a8 a2 ,a8. 1 1a 2 2 a 則 11 a2 a2 ,.a2. 4a2 2 a 則 x 1 a 4 a 1 2 2 A B (2)(2)當(dāng)當(dāng)a=0a=0時(shí),顯然時(shí),顯然B BA A; 當(dāng)當(dāng)a0a0a0時(shí),若時(shí),若B BA A,如圖,如圖, 綜上知,當(dāng)綜上知,當(dāng)B BA A時(shí),時(shí), a2.a2. (3)(3)當(dāng)且僅當(dāng)當(dāng)且僅當(dāng)A AB B且且B BA A時(shí),時(shí),A=B,A=B, 由由(1)(2)(1)(2)知知a=2.a=2. 11 a2 a2 ,0a2. 4a2 2 a 則, 1 2 x1 a 4 a 1 2 2 B A 集合的基本運(yùn)算集合的
25、基本運(yùn)算 【方法點(diǎn)睛【方法點(diǎn)睛】1.1.集合運(yùn)算的常用方法集合運(yùn)算的常用方法 一般地,集合元素離散時(shí)借助一般地,集合元素離散時(shí)借助VennVenn圖運(yùn)算;集合元素連續(xù)時(shí)借圖運(yùn)算;集合元素連續(xù)時(shí)借 助數(shù)軸運(yùn)算,借助數(shù)軸運(yùn)算時(shí)應(yīng)注意端點(diǎn)值的取舍助數(shù)軸運(yùn)算,借助數(shù)軸運(yùn)算時(shí)應(yīng)注意端點(diǎn)值的取舍. . 2.2.常用重要結(jié)論常用重要結(jié)論 (1)AB=A(1)AB=AA AB;B; (2)AB=A(2)AB=AA B.A B. 【提醒【提醒】在解決有關(guān)在解決有關(guān)AB=AB= ,AB=AB= ,A AB B等集合問(wèn)題時(shí),一等集合問(wèn)題時(shí),一 定先考慮定先考慮 是否成立,以防漏解,另外要注意分類討論和數(shù)形是否成立,以防漏解,另外要注意分類討論和數(shù)形 結(jié)合思想的應(yīng)用結(jié)合思想的應(yīng)用. . 【例【例3 3】(1)(2011(
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 重陽(yáng)節(jié)養(yǎng)老策劃書(3篇)
- 六一幼兒園主題活動(dòng)策劃方案(10篇)
- 出納述職報(bào)告
- DB31∕701-2020 有色金屬鑄件單位產(chǎn)品能源消耗限額
- 車載消防知識(shí)培訓(xùn)課件
- 《出納理論與實(shí)務(wù)》課件-出納理論與實(shí)務(wù)(項(xiàng)目四)
- 國(guó)際商務(wù)合作談判技巧及風(fēng)險(xiǎn)應(yīng)對(duì)策略
- 品牌設(shè)計(jì)服務(wù)合同
- 項(xiàng)目實(shí)施時(shí)間線及工作計(jì)劃安排表
- 健康產(chǎn)業(yè)之智慧健康管理與服務(wù)模式研究報(bào)告
- 圖解國(guó)家數(shù)據(jù)局《“數(shù)據(jù)要素×”三年行動(dòng)計(jì)劃(2024-2026 年)(征求意見(jiàn)稿)》
- 老年人預(yù)防跌倒健康宣教
- GB/T 43526-2023用戶側(cè)電化學(xué)儲(chǔ)能系統(tǒng)接入配電網(wǎng)技術(shù)規(guī)定
- 小組合作學(xué)習(xí)班級(jí)評(píng)價(jià)表
- 某公司新員工入職登記表格
- APQP新產(chǎn)品開(kāi)發(fā)計(jì)劃ABCD表
- SAP-QM質(zhì)量管理模塊前臺(tái)操作詳解(S4系統(tǒng))
- 《民法典》婚姻家庭編解讀之夫妻共同債務(wù)(1064條)
- 初中學(xué)生數(shù)學(xué)學(xué)習(xí)狀況問(wèn)卷調(diào)查及分析報(bào)告
- 貝殼房屋租賃合同標(biāo)準(zhǔn)版
- 大學(xué)生就業(yè)指導(dǎo)實(shí)用教程:就業(yè)權(quán)益與法律保障
評(píng)論
0/150
提交評(píng)論