版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
1、七年級數(shù)學七年級數(shù)學下下 新課標新課標人人 第八章二元一次方程組第八章二元一次方程組 學習新知學習新知檢測反饋檢測反饋 8.4三元一次方程組的解法三元一次方程組的解法 小明手頭有12張面額分別為1元、2元、 5元的紙幣,共計22元,其中1元紙幣的數(shù)量 是2元紙幣數(shù)量的4倍,求1元、2元、5元紙 幣各多少張. 想一想想一想 學學 習習 新新 知知 1.為解決前面的問題,如果我們設(shè)1元、2元、5元 的紙幣分別為x張、y張、z張,可以建立哪些方程呢? 想一想想一想 x+y+z=12, x+2y+5z=22, x=4y. 2.怎樣才能保證各個方程中的未知數(shù)取值都一 樣呢? 12 2522 4 x+ y
2、+z=, x+ y+ z=, x=y. 含有三個未知數(shù),每個方程中含未知數(shù)的項的次 數(shù)都是1,并且一共有三個方程,像這樣的方程組叫做三 元一次方程組. 想一想想一想 3.什么是三元一次方程組? 12 2522 4 x+ y+z=, x+ y+ z=, x=y. 知識拓展知識拓展 本節(jié)常出現(xiàn)的錯誤是對三元一次方程的本節(jié)常出現(xiàn)的錯誤是對三元一次方程的 概念理解不準確概念理解不準確,其表現(xiàn)形式有兩種其表現(xiàn)形式有兩種:一種一種 是把是把“含未知數(shù)的項的次數(shù)為含未知數(shù)的項的次數(shù)為1”理解為理解為 “每個未知數(shù)的次數(shù)都是每個未知數(shù)的次數(shù)都是1”,誤認為誤認為 xy+z=0也是三元一次方程也是三元一次方程,
3、另一種是遇到含另一種是遇到含 有字母系數(shù)的方程時有字母系數(shù)的方程時,容易忽略容易忽略“未知數(shù)的未知數(shù)的 系數(shù)不等于零系數(shù)不等于零”這個隱含條件這個隱含條件,如三元一次如三元一次 方程方程ax+y+z=6中中,a0這個條件這個條件. 三元一次方程組的解法 我們知道,二元一次方程組可以利用代入法或加減法 消去一個未知數(shù),化成一元一次方程求解.那么能不能用 同樣的思路,用代入法或加減法消去三元一次方程組的 一個未知數(shù),把它化成二元一次方程組呢? 仿照前面學過的代入法,我們可以把分別代入, 得到兩個只含y,z的方程: 12 2522 4 x+ y + z = x+y +z = x =y. , , 51
4、2 6522 y+z= y+ z=. , 思路總結(jié): 從上面的分析可以看出,解三元一次方程組的基 本思路是:通過“代入”或“加減”進行消元,把 “三元”化為“二元”,使解三元一次方程組轉(zhuǎn)化為 解二元一次方程組,進而再轉(zhuǎn)化為解一元一次方程. 這與解二元一次方程組的思路是一樣的. 12 2522 4 x+ y + z = x+y +z = x =y. , , 512 6522 y+z= y+ z=. , 例:解三元一次方程組: 解析方程只含x,z,因此,可以由消去y,得到一個只含x,z 的方程,與方程組成一個二元一次方程組. 347 239 57.9=8 x+z = x+y + z = x -y
5、+z , , 347 111035 x+ z= x+z=. , 解:3+,得11x+10z=35, 與組成方程組 解這個方程組,得 5 2 x= z= - . , 把x=5,z=- 2代入,得25+3y- 2=9,所以y= 1 . 3 因此,這個三元一次方程組的解為 1 3 = - 2 . 5x = y= z , , 知識拓展知識拓展 解三元一次方程組和解二元一次方解三元一次方程組和解二元一次方 程組的方法一樣程組的方法一樣, ,都是消元都是消元, ,但是有些特但是有些特 殊的三元一次方程組可以用一些特殊的殊的三元一次方程組可以用一些特殊的 解法解法, ,解題時要根據(jù)各方程的特點尋求解題時要根
6、據(jù)各方程的特點尋求 比較簡單的解法比較簡單的解法. . 例:在等式y(tǒng)=ax2+bx+c中,當x=- 1時,y=0;當x=2 時,y=3;當x=5時,y=60.求a,b,c的值. 解析 把a,b,c看作三個未知數(shù),分別把已知的x,y的 值代入原等式,就可以得到一個三元一次方程組. 423 2 0 =60.55 a - b+ c = a + b+ c = a + b+ c , , 解:根據(jù)題意,得三元一次方程組: - ,得a+b=1. - ,得4a+b=10. 3 2 a= b= - . , 與組成二元一次方程組 解這個方程組,得 1 10.4 a + b = a + b = , 把 代入,得c=
7、- 5. 因此 即a,b,c的值分別為3,- 2,- 5. 3 2 a= b= - 5 3 2 =- . a = b = - c , , 知識拓展知識拓展 (1)一般地一般地,使三元一次方程使三元一次方程 等號兩邊的值相等的三個等號兩邊的值相等的三個 未知數(shù)的值未知數(shù)的值,叫做三元一次叫做三元一次 方程的解方程的解; (2)三元一次方程組的三個三元一次方程組的三個 方程的公共解方程的公共解,叫做三元一叫做三元一 次方程組的解次方程組的解; (3)三元一次方程組的解是三元一次方程組的解是 三個數(shù)三個數(shù),要將這三個數(shù)代入要將這三個數(shù)代入 方程組中的每一個方程進方程組中的每一個方程進 行檢驗行檢驗,
8、只有這些數(shù)滿足方只有這些數(shù)滿足方 程組中的每一個方程程組中的每一個方程,這些這些 數(shù)才是這個方程組的解數(shù)才是這個方程組的解. 課堂小結(jié)課堂小結(jié) 用消元法解三元一次方程組的步驟用消元法解三元一次方程組的步驟: 利用消元法消去一個未知數(shù)利用消元法消去一個未知數(shù),得到一個二元一得到一個二元一 次方程組次方程組; 解這個二元一次方程組解這個二元一次方程組,求得兩個未知數(shù)的值求得兩個未知數(shù)的值; 將兩個未知數(shù)的值將兩個未知數(shù)的值,代入原方程組中比較簡單代入原方程組中比較簡單 的一個方程的一個方程,求得第三個未知數(shù)的值求得第三個未知數(shù)的值,把這三個把這三個 未知數(shù)的值寫在一起未知數(shù)的值寫在一起,就是所求三
9、元一次方程就是所求三元一次方程 組的解組的解. 1.以 為解建立一個三元一次方程,不正確的是() A.3x- 4y+2z=3 B. x- y+z=- 1 C.x+y- z=- 2 D. - y- z=1 2 x 1 3 檢測檢測反饋反饋 C 2 3 3 1 1 x = y = z = - , , 解析解析:將 分別代入四個選項,只有C選項的方程兩邊不 相等. 3 1 1 x = y = z = - , , 2.若方程x+y+m=4,x- y- 2m=- 1和x- 2m+2y=2有 公共解,則x+y+m的值為. 4 解析解析:根據(jù)題意 解得 x+y+m=4.故填4. 4, 21, 222. xym xym xmy 2, 1, 1. x y m 3.如圖所示,在第一個天平上,砝碼A的質(zhì)量等于砝碼B加上砝 碼C的質(zhì)量;如圖所示,在第二個天平上,砝碼A加上砝碼B的質(zhì) 量等于3個砝碼C的質(zhì)量.請你判斷:1個砝碼A與個砝碼 C的質(zhì)量相等. 2 解析解析:此題可以分別設(shè)砝碼A,B,C的質(zhì)量是x,y,z.然后根據(jù)兩個 天平平衡列方程組,消去y,得到x和z之間的關(guān)系即可.設(shè)砝碼 A,B,C的質(zhì)量是x,y,z.根據(jù)題意,得 +,得 2x=4z,x=2z.即1個砝碼A與2個砝碼C的質(zhì)量相等.故填2. 3 . xyz xyz , 4.解方程組 3213 27 2=132. x+y
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 高中語文第2單元孟子蚜1王好戰(zhàn)請以戰(zhàn)喻課件新人教版選修先秦諸子蚜
- 2024年吉林省長春市中考英語試題含解析
- 七年級下心理健康教育教案
- 2024年河北省高考生物試卷真題(含答案解析)
- 2024至2030年中國攻瑰茄行業(yè)投資前景及策略咨詢研究報告
- 2024至2030年中國手持式多波長穩(wěn)定光源行業(yè)投資前景及策略咨詢研究報告
- 2024至2030年中國印花T/C純棉休閑襯衫行業(yè)投資前景及策略咨詢研究報告
- 2024年山東省東營市中考語文試題含解析
- 2024年黑龍江省齊齊哈爾市中考語文試題含解析
- 2024年中國鋼絲跑道軸承市場調(diào)查研究報告
- 甲醇鍋爐資料
- 二氧化鈦實驗報告
- 英語特殊疑問句練習題(附答案)
- 歷史學科課堂觀察量表
- 重大危險源安全監(jiān)理巡視檢查記錄表(共13頁)
- 國家開放大學《計算機繪圖(本)》章節(jié)測試參考答案
- 成都市全域地籍數(shù)據(jù)建庫及宗地統(tǒng)一編碼技術(shù)方案(全市招標稿)
- DB45∕T 2364-2021 公路路基監(jiān)測技術(shù)規(guī)范
- 壓力管道防腐蝕保護控制程序
- 壓力容器設(shè)計-密封裝置設(shè)計ppt課件
- 城市軌道車輛彈性車輪研究
評論
0/150
提交評論