下載本文檔
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、圓錐曲線中“動(dòng)中求定”的八大策略 在解析幾何中常常出現(xiàn)求定點(diǎn)、定值、定向、定線等問題,它已經(jīng)成為當(dāng)前各省高考試題中的熱點(diǎn),它不但可以考查學(xué)生掌握知識(shí)的水平,更重要的是考查學(xué)生靈活運(yùn)用知識(shí)的能力以及解題方法的創(chuàng)新。而學(xué)生對(duì)此陌生的題型往往束手無策,因此筆者利用多年的教學(xué)經(jīng)驗(yàn),對(duì)此類問題加以探究,得出一些行之有效的方法策略供以參考。策略一:變量分離解析:對(duì)于某些曲線方程隨一個(gè)或兩個(gè)變量變化而變化時(shí),如果可以把變量與x、y分離,則提出變量后再根據(jù)恒等式的性質(zhì),即可以解得x、y的值,得到定點(diǎn)的坐標(biāo)。例1.已知?jiǎng)又本€,求證:點(diǎn)P(-2,2)到該動(dòng)直線的距離。證明:把直線方程化為:,令,解得:x=2,y=
2、-2,即動(dòng)直線過定點(diǎn)M(2,-2),連PM,則點(diǎn)P(-2,2)到該動(dòng)直線的距離。策略二:觀察巧代解析:利用條件,經(jīng)過觀察分析,只要滿足條件的x,y的值,就是定點(diǎn)的坐標(biāo)例2(1)已知實(shí)數(shù)m,n滿足,則動(dòng)直線必過定點(diǎn)M的坐標(biāo)為 (2)已知實(shí)數(shù)p,q滿足,則動(dòng)直線恒過定點(diǎn)M的坐標(biāo)為 略解:(1)只要令x=2,y=1,即得定點(diǎn)M(2,1);(2)只要令,則,即得定點(diǎn)M.策略三:設(shè)參分離解析:根據(jù)題意,設(shè)立參數(shù),建立方程,分離參數(shù),即可以求得定點(diǎn)。例3已知拋物線C:,焦點(diǎn)為F,定點(diǎn),動(dòng)點(diǎn)是拋物線C上的三個(gè)點(diǎn),且滿足試問所在的直線是否過定點(diǎn),若是,求出該定點(diǎn)的坐標(biāo);否則說明理由解:設(shè),則,因?yàn)?,所以,因?yàn)?/p>
3、,所以AB的方程:,由化簡(jiǎn)即得:,令則,所以直線AB過定點(diǎn)(1,-4)策略四:巧“特”結(jié)論解析:有兩種情形:一種利用特殊值探求結(jié)論,再驗(yàn)證其充分性;另一種是也先用特殊值探求結(jié)論,后作一般性探求。例4.已知橢圓,過左焦點(diǎn)作不垂直與X軸的弦交于橢圓于A、B兩點(diǎn),AB的垂直平分線交X軸于M點(diǎn),則 的值為 ( )A B. C. D. 解:本題為選擇題,即知此比值為定值,故可用特殊值法。設(shè)AB與X軸重合時(shí),M就是原點(diǎn),所以AB長(zhǎng)為6,MF的長(zhǎng)2,故=,答案為B。如果不用特殊法解,本題就是一個(gè)較難的解答題,同學(xué)們不妨一試,可用極坐標(biāo)方程解較方便,可見在解選擇題時(shí),特殊值法來判斷和尋找答案優(yōu)為重要。例5.已
4、知橢圓方程,過點(diǎn)的動(dòng)直線l交該橢圓于A、B兩點(diǎn),試問:在坐標(biāo)平面內(nèi)是否存在一個(gè)定點(diǎn)T,使得以AB為直徑的圓恒過定點(diǎn)T,若存在求出T的坐標(biāo);若不存在,請(qǐng)說明理由。解:假設(shè)滿足條件的T存在。當(dāng)直線l與X軸平行時(shí),以AB為直徑的圓方程為;當(dāng)直線l與Y軸重合時(shí),以AB為直徑的圓方程為,以上兩圓方程聯(lián)立解得即是滿足條件的必要條件。下面證明其充分性:若存在,對(duì)過S點(diǎn)不與坐標(biāo)軸平行的直線設(shè)為,把它代入橢圓方程:,得到:,設(shè),則有,因?yàn)?=,所以,即以AB為直徑的圓恒過定點(diǎn)T。其定點(diǎn)T的坐標(biāo)為(0,1)。例5.已知橢圓上任意一點(diǎn)M,是橢圓短軸的兩個(gè)端點(diǎn),作直線分別交X軸于P,Q兩點(diǎn),求證:為定值,并求出定值。
5、分析:當(dāng)動(dòng)點(diǎn)M在長(zhǎng)軸的端點(diǎn)時(shí),則P,Q重合于長(zhǎng)軸的端點(diǎn),因此=。再作一般證明即可得為定值為。策略五:設(shè)參消參解析:為了求得定值,往往需要設(shè)立一個(gè)或兩個(gè)參數(shù),如直線的斜率,動(dòng)點(diǎn)的坐標(biāo)等,然后根據(jù)條件,尋求所求的值,最后經(jīng)過消參得到所求的定值。例6.已知A(1,1)是橢圓上的一點(diǎn),是橢圓的兩個(gè)焦點(diǎn),且滿足.(1)求橢圓的方程(2)設(shè)點(diǎn)B、C是橢圓上的兩個(gè)動(dòng)點(diǎn),且直線AB、AC的傾斜角互補(bǔ),試判斷直線BC的斜率是否為定值?并說明理由。解:(1)因?yàn)閍=2,把A點(diǎn)坐標(biāo)代入橢圓方程得:,所以橢圓方程為:。(2)由條件可以得到直線AB、AC的斜率存在且不為0,故設(shè)直線AB的方程為,代入橢圓方程得:,因?yàn)椋?/p>
6、所以,又設(shè)直線BC的方程為,同理得到: ,, 因此得到:,把代入得,所以直線BC的斜率為定值。策略六:巧用定義解析:結(jié)合圓錐曲線的定義,在運(yùn)動(dòng)變化中尋求符合定義的不變量。例7.已知P是雙曲線上不同于頂點(diǎn)的右支上任意一點(diǎn),是雙曲線的左右兩個(gè)焦點(diǎn),試問:三角形的內(nèi)心I是否在一定直線上,若存在,求出直線方程;若不存在,請(qǐng)說明理由。解:設(shè)三角形的內(nèi)切圓與X軸的切點(diǎn)為M,則由雙曲線的定義及切線長(zhǎng)定理可知:,所以M也在雙曲線上,即M為雙曲線右頂點(diǎn),又X軸,所以三角形的內(nèi)心I在一定直線上。例8.以拋物線上任意一點(diǎn)P為圓心,作與Y軸相切的圓,則這些動(dòng)圓必經(jīng)過定點(diǎn)的坐標(biāo)為 解:不難求得Y軸是拋物線的準(zhǔn)線,由拋物
7、線的定義可知,這些圓必經(jīng)過拋物線的焦點(diǎn)F,可以求得F(4,-1),所以這些動(dòng)圓必經(jīng)過定點(diǎn)的坐標(biāo)為(4,-1)。策略七:幾何結(jié)合解析:有些求定值問題往往可以與平面幾何的一些性質(zhì)相結(jié)合,可以達(dá)到事半功倍的效果,如上面的例7就是運(yùn)用了切線長(zhǎng)定理。例9.已知圓,過原點(diǎn)O的動(dòng)直線交圓于P、Q兩點(diǎn),則的值為 解:設(shè)OB切于圓于點(diǎn)B,則=.例10已知AB是雙曲線過焦點(diǎn)的任意一條弦,以AB為直徑的圓被與相應(yīng)的準(zhǔn)線截得圓弧,求證:的度數(shù)為定值。解:設(shè)AB的中點(diǎn)為P,P、A、B到相應(yīng)的準(zhǔn)線距離分別為,則,(r為以AB為直徑的圓的半徑),所以即的度數(shù)為定值,其定值為。策略八:極坐標(biāo)法解析:關(guān)于長(zhǎng)度計(jì)算的某些問題,用極坐標(biāo)法會(huì)來得很方便,先要根據(jù)條件建立恰當(dāng)?shù)臉O坐標(biāo)系,然后給動(dòng)點(diǎn)設(shè)出極坐標(biāo),極角之間的關(guān)系往往是解決問題的關(guān)鍵。例11.橢圓上有兩個(gè)動(dòng)點(diǎn)A、B滿足,(O為坐標(biāo)原點(diǎn)),求證:為定值。 解:設(shè)以原點(diǎn)為極點(diǎn),OX為極軸,建立極坐標(biāo)系。則有代入橢圓方程得到橢圓的極坐標(biāo)方程
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 農(nóng)地生態(tài)系統(tǒng)健康評(píng)價(jià)方法研究-深度研究
- 城市交通流量管理-第1篇-深度研究
- 儲(chǔ)能投資回報(bào)率研究-深度研究
- 大數(shù)據(jù)在企業(yè)決策中的應(yīng)用-第1篇-深度研究
- 基于人工智能的熱量表數(shù)據(jù)異常檢測(cè)-深度研究
- 二零二五年度城市更新項(xiàng)目存量房屋置換合同4篇
- 2025年廣東工程職業(yè)技術(shù)學(xué)院高職單招高職單招英語(yǔ)2016-2024歷年頻考點(diǎn)試題含答案解析
- 二零二五紅酒年份酒定制銷售及市場(chǎng)拓展合同范本3篇
- 2025年川北幼兒師范高等專科學(xué)校高職單招高職單招英語(yǔ)2016-2024歷年頻考點(diǎn)試題含答案解析
- 二零二五年房地產(chǎn)糾紛調(diào)解合同范本匯編
- 2024年萍鄉(xiāng)衛(wèi)生職業(yè)學(xué)院?jiǎn)握新殬I(yè)技能測(cè)試題庫(kù)標(biāo)準(zhǔn)卷
- 2024年高考數(shù)學(xué)(理)試卷(全國(guó)甲卷)(空白卷)
- DB32-T 4444-2023 單位消防安全管理規(guī)范
- 臨床三基考試題庫(kù)(附答案)
- 合同簽訂執(zhí)行風(fēng)險(xiǎn)管控培訓(xùn)
- 九宮數(shù)獨(dú)200題(附答案全)
- 人員密集場(chǎng)所消防安全管理培訓(xùn)
- PTW-UNIDOS-E-放射劑量?jī)x中文說明書
- JCT587-2012 玻璃纖維纏繞增強(qiáng)熱固性樹脂耐腐蝕立式貯罐
- 典范英語(yǔ)2b課文電子書
- 員工信息登記表(標(biāo)準(zhǔn)版)
評(píng)論
0/150
提交評(píng)論