機(jī)器視覺技術(shù)與應(yīng)用_第1頁
機(jī)器視覺技術(shù)與應(yīng)用_第2頁
機(jī)器視覺技術(shù)與應(yīng)用_第3頁
機(jī)器視覺技術(shù)與應(yīng)用_第4頁
機(jī)器視覺技術(shù)與應(yīng)用_第5頁
已閱讀5頁,還剩26頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

1、Logistic Regression,Classification,Machine Learning,Classification,Email: Spam / Not Spam? Online Transactions: Fraudulent (Yes / No)? Tumor: Malignant / Benign ?,0: “Negative Class” (e.g., benign tumor) 1: “Positive Class” (e.g., malignant tumor),Tumor Size,Threshold classifier output at 0.5:,If ,

2、predict “y = 1”,If , predict “y = 0”,Tumor Size,Malignant ?,(Yes) 1,(No) 0,Classification: y = 0 or 1,can be 1 or 0,Logistic Regression:,Logistic Regression,HypothesisRepresentation,Machine Learning,Sigmoid function Logistic function,Logistic Regression Model,Want,0,Interpretation of Hypothesis Outp

3、ut,= estimated probability that y = 1 on input x,Tell patient that 70% chance of tumor being malignant,Example: If,“probability that y = 1, given x, parameterized by ”,Logistic Regression,Decision boundary,Machine Learning,Logistic regression,Suppose predict “ “ if,predict “ “ if,x1,x2,Decision Boun

4、dary,1,2,3,1,2,3,Predict “ “ if,Non-linear decision boundaries,x1,x2,Predict “ “ if,x1,x2,1,-1,-1,1,Logistic Regression,Cost function,Machine Learning,Training set:,How to choose parameters ?,m examples,Cost function,Linear regression:,“non-convex”,“convex”,Logistic regression cost function,If y = 1

5、,1,0,Logistic regression cost function,If y = 0,1,0,Logistic Regression,Simplified cost function and gradient descent,Machine Learning,Logistic regression cost function,Output,Logistic regression cost function,To fit parameters :,To make a prediction given new :,Gradient Descent,Want :,Repeat,(simul

6、taneously update all ),Gradient Descent,Want :,(simultaneously update all ),Repeat,Algorithm looks identical to linear regression!,Logistic Regression,Advanced optimization,Machine Learning,Optimization algorithm,Cost function . Want .,Given , we have code that can compute,(for ),Repeat,Gradient des

7、cent:,Optimization algorithm,Given , we have code that can compute,(for ),Optimization algorithms: Gradient descent,Conjugate gradient BFGS L-BFGS,Advantages: No need to manually pick Often faster than gradient descent. Disadvantages: More complex,Example:,function jVal, gradient = costFunction(thet

8、a) jVal = (theta(1)-5)2 + . (theta(2)-5)2; gradient = zeros(2,1); gradient(1) = 2*(theta(1)-5);gradient(2) = 2*(theta(2)-5);,options = optimset(GradObj, on, MaxIter, 100); initialTheta = zeros(2,1);optTheta, functionVal, exitFlag . = fminunc(costFunction, initialTheta, options);,gradient(1) = ;,func

9、tion jVal, gradient = costFunction(theta),theta =,jVal = ;,gradient(2) = ;,gradient(n+1) = ;,code to compute,code to compute,code to compute,code to compute,Logistic Regression,Multi-class classification: One-vs-all,Machine Learning,Multiclass classification,Email foldering/tagging: Work, Friends, Family, Hobby,Medical diagrams: Not ill, Cold, Flu,Weather: Sunny, Cloudy, Rain, Snow,x1,x2,Binary classification:,Multi-class classification:,x1,x2,One-vs-all (one-vs-rest):,Class 1: Class 2: Class 3:,x1,x2,x1,x2,x1,x2,One-vs-all,Tra

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論