版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
1、.因式分解技巧方法第一部分:方法介紹多項式的因式分解是代數(shù)式恒等變形的基本形式之一,它被廣泛地應用于初等數(shù)學之中,是我們解決許多數(shù)學問題的有力工具因式分解方法靈活,技巧性強,學習這些方法與技巧,不僅是掌握因式分解內容所必需的,而且對于培養(yǎng)學生的解題技能,發(fā)展學生的思維能力,都有著十分獨特的作用初中數(shù)學教材中主要介紹了提取公因式法、運用公式法、分組分解法和十字相乘法本講及下一講在中學數(shù)學教材基礎上,對因式分解的方法、技巧和應用作進一步的介紹一、提公因式法.:ma+mb+mc=m(a+b+c)二、運用公式法.在整式的乘、除中,我們學過若干個乘法公式,現(xiàn)將其反向使用,即為因式分解中常用的公式,例如:
2、(1)(a+b)(a-b) = a2-b2 -a2-b2=(a+b)(a-b);(2) (ab)2 = a22ab+b2 a22ab+b2=(ab)2;(3) (a+b)(a2-ab+b2) =a3+b3- a3+b3=(a+b)(a2-ab+b2);(4) (a-b)(a2+ab+b2) = a3-b3 -a3-b3=(a-b)(a2+ab+b2)下面再補充兩個常用的公式:(5)a2+b2+c2+2ab+2bc+2ca=(a+b+c)2;(6)a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-bc-ca);例.已知是的三邊,且,則的形狀是( )A.直角三角形 B等腰三角形
3、C 等邊三角形 D等腰直角三角形解: 三、分組分解法.(一)分組后能直接提公因式例1、分解因式:分析:從“整體”看,這個多項式的各項既沒有公因式可提,也不能運用公式分解,但從“局部”看,這個多項式前兩項都含有a,后兩項都含有b,因此可以考慮將前兩項分為一組,后兩項分為一組先分解,然后再考慮兩組之間的聯(lián)系。解:原式= = 每組之間還有公因式! = 例2、分解因式:解法一:第一、二項為一組; 解法二:第一、四項為一組;第三、四項為一組。 第二、三項為一組。解:原式= 原式= = = = =練習:分解因式1、 2、(二)分組后能直接運用公式例3、分解因式:分析:若將第一、三項分為一組,第二、四項分為
4、一組,雖然可以提公因式,但提完后就能繼續(xù)分解,所以只能另外分組。 解:原式= = =例4、分解因式: 解:原式= = =練習:分解因式3、 4、綜合練習:(1) (2)(3) (4)(5) (6)(7) (8)(9) (10)(11)(12)四、十字相乘法.(一)二次項系數(shù)為1的二次三項式直接利用公式進行分解。特點:(1)二次項系數(shù)是1; (2)常數(shù)項是兩個數(shù)的乘積;(3)一次項系數(shù)是常數(shù)項的兩因數(shù)的和。思考:十字相乘有什么基本規(guī)律?例.已知05,且為整數(shù),若能用十字相乘法分解因式,求符合條件的.解析:凡是能十字相乘的二次三項 式ax2+bx+c,都要求 0而且是一個完全平方數(shù)。于是為完全平方
5、數(shù),例5、分解因式:分析:將6分成兩個數(shù)相乘,且這兩個數(shù)的和要等于5。 由于6=23=(-2)(-3)=16=(-1)(-6),從中可以發(fā)現(xiàn)只有23的分解適合,即2+3=5。 1 2解:= 1 3 = 12+13=5用此方法進行分解的關鍵:將常數(shù)項分解成兩個因數(shù)的積,且這兩個因數(shù)的代數(shù)和要等于一次項的系數(shù)。例6、分解因式:解:原式= 1 -1 = 1 -6 (-1)+(-6)= -7練習5、分解因式(1) (2) (3)練習6、分解因式(1) (2) (3)(二)二次項系數(shù)不為1的二次三項式條件:(1) (2) (3) 分解結果:=例7、分解因式:分析: 1 -2 3 -5 (-6)+(-5)
6、= -11解:=練習7、分解因式:(1) (2) (3) (4)(三)二次項系數(shù)為1的齊次多項式例8、分解因式:分析:將看成常數(shù),把原多項式看成關于的二次三項式,利用十字相乘法進行分解。 1 8b 1 -16b 8b+(-16b)= -8b 解:= =練習8、分解因式(1)(2)(3)(四)二次項系數(shù)不為1的齊次多項式例9、 例10、 1 -2y 把看作一個整體 1 -1 2 -3y 1 -2 (-3y)+(-4y)= -7y (-1)+(-2)= -3 解:原式= 解:原式=練習9、分解因式:(1) (2)綜合練習10、(1) (2)(3) (4)(5) (6)(7)(8)(9)(10)思考
7、:分解因式:五、換元法。例13、分解因式(1) (2)解:(1)設2005=,則原式= = =(2)型如的多項式,分解因式時可以把四個因式兩兩分組相乘。 原式=設,則原式= =練習13、分解因式(1)(2) (3)例14、分解因式(1)觀察:此多項式的特點是關于的降冪排列,每一項的次數(shù)依次少1,并且系數(shù)成“軸對稱”。這種多項式屬于“等距離多項式”。方法:提中間項的字母和它的次數(shù),保留系數(shù),然后再用換元法。解:原式=設,則原式= = = =(2)解:原式= 設,則 原式= =練習14、(1)(2)六、添項、拆項、配方法。例15、分解因式(1) 解法1拆項。 解法2添項。原式= 原式= = = =
8、 = = =(2)解:原式=練習15、分解因式(1) (2)(3) (4)(5) (6)七、待定系數(shù)法。例16、分解因式分析:原式的前3項可以分為,則原多項式必定可分為解:設=對比左右兩邊相同項的系數(shù)可得,解得原式=例17、(1)當為何值時,多項式能分解因式,并分解此多項式。 (2)如果有兩個因式為和,求的值。(1)分析:前兩項可以分解為,故此多項式分解的形式必為解:設= 則=比較對應的系數(shù)可得:,解得:或當時,原多項式可以分解;當時,原式=;當時,原式=(2)分析:是一個三次式,所以它應該分成三個一次式相乘,因此第三個因式必為形如的一次二項式。解:設= 則= 解得,=21練習17、(1)分解
9、因式(2)分解因式(3) 已知:能分解成兩個一次因式之積,求常數(shù)并且分解因式。(4) 為何值時,能分解成兩個一次因式的乘積,并分解此多項式。第二部分:習題大全經典一:一、填空題1. 把一個多項式化成幾個整式的_的形式,叫做把這個多項式分解因式。2分解因式: m3-4m= .3.分解因式: x2-4y2= _ _.4、分解因式:=_ _。5.將xn-yn分解因式的結果為(x2+y2)(x+y)(x-y),則n的值為 . 6、若,則=_,=_。二、選擇題7、多項式的公因式是( )A、 B、 C、 D、8、下列各式從左到右的變形中,是因式分解的是( )A、 B、C、 D、10.下列多項式能分解因式的
10、是( )(A)x2-y (B)x2+1 (C)x2+y+y2 (D)x2-4x+411把(xy)2(yx)分解因式為( )A(xy)(xy1) B(yx)(xy1)C(yx)(yx1) D(yx)(yx1)12下列各個分解因式中正確的是( )A10ab2c6ac22ac2ac(5b23c)B(ab)2(ba)2(ab)2(ab1)Cx(bca)y(abc)abc(bca)(xy1)D(a2b)(3ab)5(2ba)2(a2b)(11b2a)13.若k-12xy+9x2是一個完全平方式,那么k應為( )A.2 B.4 C.2y2 D.4y2三、把下列各式分解因式: 14、 15、16、 17、
11、18、 19、; 五、解答題20、如圖,在一塊邊長=6.67cm的正方形紙片中,挖去一個邊長=3.33cm的正方形。求紙片剩余部分的面積。dD21、如圖,某環(huán)保工程需要一種空心混凝土管道,它的規(guī)格是內徑,外徑長。利用分解因式計算澆制一節(jié)這樣的管道需要多少立方米的混凝土?(取3.14,結果保留2位有效數(shù)字)22、觀察下列等式的規(guī)律,并根據(jù)這種規(guī)律寫出第(5)個等式。經典二:因式分解小結知識總結歸納 因式分解是把一個多項式分解成幾個整式乘積的形式,它和整式乘法互為逆運算,在初中代數(shù)中占有重要的地位和作用,在其它學科中也有廣泛應用,學習本章知識時,應注意以下幾點。 1. 因式分解的對象是多項式; 2
12、. 因式分解的結果一定是整式乘積的形式; 3. 分解因式,必須進行到每一個因式都不能再分解為止; 4. 公式中的字母可以表示單項式,也可以表示多項式; 5. 結果如有相同因式,應寫成冪的形式; 6. 題目中沒有指定數(shù)的范圍,一般指在有理數(shù)范圍內分解; 7. 因式分解的一般步驟是: (1)通常采用一“提”、二“公”、三“分”、四“變”的步驟。即首先看有無公因式可提,其次看能否直接利用乘法公式;如前兩個步驟都不能實施,可用分組分解法,分組的目的是使得分組后有公因式可提或可利用公式法繼續(xù)分解; (2)若上述方法都行不通,可以嘗試用配方法、換元法、待定系數(shù)法、試除法、拆項(添項)等方法; 下面我們一起
13、來回顧本章所學的內容。 1. 通過基本思路達到分解多項式的目的 例1. 分解因式 分析:這是一個六項式,很顯然要先進行分組,此題可把分別看成一組,此時六項式變成二項式,提取公因式后,再進一步分解;也可把,分別看成一組,此時的六項式變成三項式,提取公因式后再進行分解。 解一:原式 解二:原式= 2. 通過變形達到分解的目的 例1. 分解因式 解一:將拆成,則有 解二:將常數(shù)拆成,則有 3. 在證明題中的應用 例:求證:多項式的值一定是非負數(shù) 分析:現(xiàn)階段我們學習了兩個非負數(shù),它們是完全平方數(shù)、絕對值。本題要證明這個多項式是非負數(shù),需要變形成完全平方數(shù)。 證明: 設,則 4. 因式分解中的轉化思想
14、 例:分解因式: 分析:本題若直接用公式法分解,過程很復雜,觀察a+b,b+c與a+2b+c的關系,努力尋找一種代換的方法。 解:設a+b=A,b+c=B,a+2b+c=A+B 說明:在分解因式時,靈活運用公式,對原式進行“代換”是很重要的。中考點撥 例1.在中,三邊a,b,c滿足 求證: 證明: 說明:此題是代數(shù)、幾何的綜合題,難度不大,學生應掌握這類題不能丟分。 例2. 已知:_ 解: 說明:利用等式化繁為易。題型展示 1. 若x為任意整數(shù),求證:的值不大于100。 解: 說明:代數(shù)證明問題在初二是較為困難的問題。一個多項式的值不大于100,即要求它們的差小于零,把它們的差用因式分解等方法
15、恒等變形成完全平方是一種常用的方法。 2. 將 解: 說明:利用因式分解簡化有理數(shù)的計算。實戰(zhàn)模擬1. 分解因式: 2. 已知:的值。3. 矩形的周長是28cm,兩邊x,y使,求矩形的面積。 4. 求證:是6的倍數(shù)。(其中n為整數(shù)) 5. 已知:a、b、c是非零實數(shù),且,求a+b+c的值。 6. 已知:a、b、c為三角形的三邊,比較的大小。經典三:因式分解練習題精選一、填空:(30分)1、若是完全平方式,則的值等于_。2、則=_=_3、與的公因式是4、若=,則m=_,n=_。5、在多項式中,可以用平方差公式分解因式的有_ ,其結果是 _。6、若是完全平方式,則m=_。7、8、已知則9、若是完全
16、平方式M=_。10、, 11、若是完全平方式,則k=_。12、若的值為0,則的值是_。13、若則=_。14、若則_。15、方程,的解是_。二、選擇題:(10分)1、多項式的公因式是( )A、a、 B、 C、 D、2、若,則m,k的值分別是( )A、m=2,k=6,B、m=2,k=12,C、m=4,k=12、D m=4,k=12、3、下列名式:中能用平方差公式分解因式的有( )A、1個,B、2個,C、3個,D、4個4、計算的值是( ) A、 B、三、分解因式:(30分)1 、 2 、 3 、 4、 5、 6、7、 8、9 、 10、四、代數(shù)式求值(15分)1、 已知,求 的值。2、 若x、y互為
17、相反數(shù),且,求x、y的值3、 已知,求的值五、計算: (15)(1) 0.75 (2) (3)六、試說明:(8分)1、對于任意自然數(shù)n,都能被動24整除。2、兩個連續(xù)奇數(shù)的積加上其中較大的數(shù),所得的數(shù)就是夾在這兩個連續(xù)奇數(shù)之間的偶數(shù)與較大奇數(shù)的積。七、利用分解因式計算(8分)1、一種光盤的外D=11.9厘米,內徑的d=3.7厘米,求光盤的面積。(結果保留兩位有效數(shù)字)2、正方形1的周長比正方形2的周長長96厘米,其面積相差960平方厘米求這兩個正方形的邊長。八、老師給了一個多項式,甲、乙、丙、丁四個同學分別對這個多項式進行了描述:甲:這是一個三次四項式乙:三次項系數(shù)為1,常數(shù)項為1。丙:這個多
18、項式前三項有公因式?。哼@個多項式分解因式時要用到公式法若這四個同學描述都正確請你構造一個同時滿足這個描述的多項式,并將它分解因式。(4分)經典四:因式分解一、 選擇題1、代數(shù)式a3b2a2b3, a3b4a4b3,a4b2a2b4的公因式是( )A、a3b2 B、a2b2 C、a2b3 D、a3b3 2、用提提公因式法分解因式5a(xy)10b(xy),提出的公因式應當為( )A、5a10b B、5a10b C 、5(xy) D、yx3、把8m312m24m分解因式,結果是( )A、4m(2m23m) B、4m(2m23m1) C、4m(2m23m1) D、2m(4m26m2)4、把多項式2x
19、44x2分解因式,其結果是( )A、2(x42x2) B、2(x42x2) C、x2(2x24) D、 2x2(x22)5、(2)1998(2)1999等于( )A、21998 B、21998 C、21999 D、219996、把16x4分解因式,其結果是( )A、(2x)4 B、(4x2)( 4x2) C、(4x2)(2x)(2x) D、(2x)3(2x)7、把a42a2b2b4分解因式,結果是( )A、a2(a22b2)b4 B、(a2b2)2 C、(ab)4 D、(ab)2(ab)28、把多項式2x22x分解因式,其結果是( )A、(2x)2 B、2(x)2 C、(x)2 D、 (x1)
20、2 9、若9a26(k3)a1是完全平方式,則 k的值是( )A、4 B、2 C、3 D、4或210、(2xy)(2xy)是下列哪個多項式分解因式的結果( )A、4x2y2 B、4x2y2 C、4x2y2 D、4x2y2 11、多項式x23x54分解因式為( )A、(x6)(x9) B、(x6)(x9)C、(x6)(x9) D、 (x6)(x9)二、填空題1、2x24xy2x = _(x2y1)2、4a3b210a2b3 = 2a2b2(_)3、(1a)mna1=(_)(mn1)4、m(mn)2(nm)2 =(_)(_)5、x2(_)16y2=( )26、x2(_)2=(x5y)( x5y)7
21、、a24(ab)2=(_)(_)8、a(xyz)b(xyz)c(xyz)= (xyz)(_)9、16(xy)29(xy)2=(_)(_)10、(ab)3(ab)=(ab)(_)(_)11、x23x2=(_)(_)12、已知x2px12=(x2)(x6),則p=_.三、解答題1、把下列各式因式分解。(1)x22x3 (2)3y36y23y(3)a2(x2a)2a(x2a)2 (4)(x2)2x2(5)25m210mnn2 (6)12a2b(xy)4ab(yx)(7)(x1)2(3x2)(23x) (8)a25a6(9)x211x24 (10)y212y28(11)x24x5 (12)y43y32
22、8y22、用簡便方法計算。(1)9992999 (2)2022542256352(3) 3、已知:xy=,xy=1.求x3y2x2y2xy3的值。四、探究創(chuàng)新樂園1、 若ab=2,ac=,求(bc)23(bc)的值。2、 求證:11111110119=119109經典五:因式分解練習題一、填空題:2(a3)(32a)=_(3a)(32a);12若m23m2=(ma)(mb),則a=_,b=_;15當m=_時,x22(m3)x25是完全平方式二、選擇題:1下列各式的因式分解結果中,正確的是 Aa2b7abbb(a27a)B3x2y3xy6y=3y(x2)(x1)C8xyz6x2y22xyz(43
23、xy)D2a24ab6ac2a(a2b3c)2多項式m(n2)m2(2n)分解因式等于 A(n2)(mm2) B(n2)(mm2)Cm(n2)(m1) Dm(n2)(m1)3在下列等式中,屬于因式分解的是 Aa(xy)b(mn)axbmaybnBa22abb21=(ab)21C4a29b2(2a3b)(2a3b)Dx27x8=x(x7)84下列各式中,能用平方差公式分解因式的是 Aa2b2 Ba2b2Ca2b2 D(a2)b25若9x2mxy16y2是一個完全平方式,那么m的值是 A12 B24C12 D126把多項式an+4an+1分解得 Aan(a4a) Ban-1(a31)Can+1(a
24、1)(a2a1) Dan+1(a1)(a2a1)7若a2a1,則a42a33a24a3的值為 A8 B7C10 D128已知x2y22x6y10=0,那么x,y的值分別為 Ax=1,y=3 Bx=1,y=3Cx=1,y=3 Dx=1,y=39把(m23m)48(m23m)216分解因式得 A(m1)4(m2)2 B(m1)2(m2)2(m23m2)C(m4)2(m1)2 D(m1)2(m2)2(m23m2)210把x27x60分解因式,得 A(x10)(x6) B(x5)(x12)C(x3)(x20) D(x5)(x12)11把3x22xy8y2分解因式,得 A(3x4)(x2) B(3x4)
25、(x2)C(3x4y)(x2y) D(3x4y)(x2y)12把a28ab33b2分解因式,得 A(a11)(a3) B(a11b)(a3b)C(a11b)(a3b) D(a11b)(a3b)13把x43x22分解因式,得 A(x22)(x21) B(x22)(x1)(x1)C(x22)(x21) D(x22)(x1)(x1)14多項式x2axbxab可分解因式為 A(xa)(xb) B(xa)(xb)C(xa)(xb) D(xa)(xb)15一個關于x的二次三項式,其x2項的系數(shù)是1,常數(shù)項是12,且能分解因式,這樣的二次三項式是 Ax211x12或x211x12Bx2x12或x2x12Cx
26、24x12或x24x12D以上都可以16下列各式x3x2x1,x2yxyx,x22xy21,(x23x)2(2x1)2中,不含有(x1)因式的有 A1個 B2個C3個 D4個17把9x212xy36y2分解因式為 A(x6y3)(x6x3)B(x6y3)(x6y3)C(x6y3)(x6y3)D(x6y3)(x6y3)18下列因式分解錯誤的是 Aa2bcacab=(ab)(ac)Bab5a3b15=(b5)(a3)Cx23xy2x6y=(x3y)(x2)Dx26xy19y2=(x3y1)(x3y1)19已知a2x22xb2是完全平方式,且a,b都不為零,則a與b的關系為 A互為倒數(shù)或互為負倒數(shù)
27、B互為相反數(shù)C相等的數(shù) D任意有理數(shù)20對x44進行因式分解,所得的正確結論是 A不能分解因式 B有因式x22x2C(xy2)(xy8) D(xy2)(xy8)21把a42a2b2b4a2b2分解因式為 A(a2b2ab)2 B(a2b2ab)(a2b2ab)C(a2b2ab)(a2b2ab) D(a2b2ab)222(3x1)(x2y)是下列哪個多項式的分解結果 A3x26xyx2y B3x26xyx2yCx2y3x26xy Dx2y3x26xy2364a8b2因式分解為 A(64a4b)(a4b) B(16a2b)(4a2b)C(8a4b)(8a4b) D(8a2b)(8a4b)249(x
28、y)212(x2y2)4(xy)2因式分解為 A(5xy)2 B(5xy)2C(3x2y)(3x2y) D(5x2y)225(2y3x)22(3x2y)1因式分解為 A(3x2y1)2 B(3x2y1)2C(3x2y1)2 D(2y3x1)226把(ab)24(a2b2)4(ab)2分解因式為 A(3ab)2 B(3ba)2C(3ba)2 D(3ab)227把a2(bc)22ab(ac)(bc)b2(ac)2分解因式為 Ac(ab)2 Bc(ab)2Cc2(ab)2 Dc2(ab)28若4xy4x2y2k有一個因式為(12xy),則k的值為 A0 B1C1 D429分解因式3a2x4b2y3b2x4a2y,正確的是 A(a2b2)(3x4y) B(ab)(ab)(3x4y)C
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024科技公司與醫(yī)療機構之間關于醫(yī)療設備研發(fā)與銷售合同
- 2025年度廠房辦公室裝修項目噪音控制合同范本4篇
- 個體經營者與員工2024年勞動協(xié)議樣式版B版
- 花煙草養(yǎng)護知識培訓課件
- 2024跨國企業(yè)人力資源外包管理合同
- 2024版貨物運輸安全合同書
- 2025年度園林景區(qū)草坪修剪與生態(tài)修復合同3篇
- 2024年03月廣東屆興業(yè)銀行深圳分行線上校招筆試歷年參考題庫附帶答案詳解
- 2025年度城市綜合體戶外廣告位及攤位聯(lián)合租賃及品牌推廣合同4篇
- 2025年拆除工程環(huán)境影響評價合同4篇
- 電線電纜加工質量控制流程
- 提優(yōu)精練08-2023-2024學年九年級英語上學期完形填空與閱讀理解提優(yōu)精練(原卷版)
- DB4511T 0002-2023 瓶裝液化石油氣充裝、配送安全管理規(guī)范
- 企業(yè)內部客供物料管理辦法
- 婦科臨床葡萄胎課件
- 三基三嚴練習題庫與答案
- 傳媒行業(yè)突發(fā)事件應急預案
- 債務抵租金協(xié)議書范文范本
- 藥學技能競賽標準答案與評分細則處方
- 2025屆高考英語 716個閱讀理解高頻詞清單
- 山東省濰坊市2023-2024學年高二下學期期末考試 歷史 含解析
評論
0/150
提交評論