高中數(shù)學(xué)排列組合難題十一種方法_第1頁
高中數(shù)學(xué)排列組合難題十一種方法_第2頁
高中數(shù)學(xué)排列組合難題十一種方法_第3頁
高中數(shù)學(xué)排列組合難題十一種方法_第4頁
高中數(shù)學(xué)排列組合難題十一種方法_第5頁
已閱讀5頁,還剩2頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

1、高考數(shù)學(xué)排列組合難題解決方法 1.分類計數(shù)原理(加法原理)完成一件事,有類辦法,在第1類辦法中有種不同的方法,在第2類辦法中有種不同的方法,在第類辦法中有種不同的方法,那么完成這件事共有:種不同的方法2.分步計數(shù)原理(乘法原理)完成一件事,需要分成個步驟,做第1步有種不同的方法,做第2步有種不同的方法,做第步有種不同的方法,那么完成這件事共有:種不同的方法3.分類計數(shù)原理分步計數(shù)原理區(qū)別 分類計數(shù)原理方法相互獨(dú)立,任何一種方法都可以獨(dú)立地完成這件事。分步計數(shù)原理各步相互依存,每步中的方法完成事件的一個階段,不能完成整個事件解決排列組合綜合性問題的一般過程如下:1.認(rèn)真審題弄清要做什么事2.怎樣

2、做才能完成所要做的事,即采取分步還是分類,或是分步與分類同時進(jìn)行,確定分多少步及多少類。3.確定每一步或每一類是排列問題(有序)還是組合(無序)問題,元素總數(shù)是多少及取出多少個元素.4.解決排列組合綜合性問題,往往類與步交叉,因此必須掌握一些常用的解題策略一.特殊元素和特殊位置優(yōu)先策略例1.由0,1,2,3,4,5可以組成多少個沒有重復(fù)數(shù)字五位奇數(shù).解:由于末位和首位有特殊要求,應(yīng)該優(yōu)先安排,以免不合要求的元素占了這兩個位置. 先排末位共有 然后排首位共有 最后排其它位置共有 由分步計數(shù)原理得位置分析法和元素分析法是解決排列組合問題最常用也是最基本的方法,若以元素分析為主,需先安排特殊元素,再

3、處理其它元素.若以位置分析為主,需先滿足特殊位置的要求,再處理其它位置。若有多個約束條件,往往是考慮一個約束條件的同時還要兼顧其它條件練習(xí)題:7種不同的花種在排成一列的花盆里,若兩種葵花不種在中間,也不種在兩端的花盆里,問有多少不同的種法?二.相鄰元素捆綁策略例2. 7人站成一排 ,其中甲乙相鄰且丙丁相鄰, 共有多少種不同的排法.解:可先將甲乙兩元素捆綁成整體并看成一個復(fù)合元素,同時丙丁也看成一個復(fù)合元素,再與其它元素進(jìn)行排列,同時對相鄰元素內(nèi)部進(jìn)行自排。由分步計數(shù)原理可得共有種不同的排法要求某幾個元素必須排在一起的問題,可以用捆綁法來解決問題.即將需要相鄰的元素合并為一個元素,再與其它元素一

4、起作排列,同時要注意合并元素內(nèi)部也必須排列.練習(xí)題1.用1,2,3,4,5組成沒有重復(fù)數(shù)字的五位數(shù)其中恰有兩個偶數(shù)夾1,在兩個奇數(shù)之間,這樣的五位數(shù)有多少個?解:把,當(dāng)作一個小集團(tuán)與排隊(duì)共有種排法,再排小集團(tuán)內(nèi)部共有種排法,由分步計數(shù)原理共有種排法.小集團(tuán)排列問題中,先整體后局部,再結(jié)合其它策略進(jìn)行處理。:2.計劃展出10幅不同的畫,其中1幅水彩畫,幅油畫,幅國畫, 排成一行陳列,要求同一 品種的必須連在一起,并且水彩畫不在兩端,那么共有陳列方式的種數(shù)為3. 5男生和女生站成一排照像,男生相鄰,女生也相鄰的排法有種三.不相鄰問題插空策略例3.一個晚會的節(jié)目有4個舞蹈,2個相聲,3個獨(dú)唱,舞蹈節(jié)

5、目不能連續(xù)出場,則節(jié)目的出場順序有多少種?解:分兩步進(jìn)行第一步排2個相聲和3個獨(dú)唱共有種,第二步將4舞蹈插入第一步排好的6個元素中間包含首尾兩個空位共有種不同的方法,由分步計數(shù)原理,節(jié)目的不同順序共有 種元素相離問題可先把沒有位置要求的元素進(jìn)行排隊(duì)再把不相鄰元素插入中間和兩端練習(xí)題:某班新年聯(lián)歡會原定的5個節(jié)目已排成節(jié)目單,開演前又增加了兩個新節(jié)目.如果將這兩個新節(jié)目插入原節(jié)目單中,且兩個新節(jié)目不相鄰,那么不同插法的種數(shù)為 30四.定序問題倍縮空位插入策略例4.7人排隊(duì),其中甲乙丙3人順序一定共有多少不同的排法解: (空位法)設(shè)想有7把椅子讓除甲乙丙以外的四人就坐共有種方法,其余的三個位置甲乙

6、丙共有 1種坐法,則共有種方法。 思考:可以先讓甲乙丙就坐嗎?空模型處理 (插入法)先排甲乙丙三個人,共有1種排法,再把其余4四人依次插入共有 方法馬路上有編號為1,2,3,4,5,6,7,8,9的九只路燈,現(xiàn)要關(guān)掉其中的3盞,但不能關(guān)掉相鄰的2盞或3盞,也不能關(guān)掉兩端的2盞,求滿足條件的關(guān)燈方法有多少種?解:把此問題當(dāng)作一個排隊(duì)模型在6盞亮燈的5個空隙中插入3個不亮的燈有 種一些不易理解的排列組合題如果能轉(zhuǎn)化為非常熟悉的模型,如占位填空模型,排隊(duì)模型,裝盒模型等,可使問題直觀解決練習(xí)題:某排共有10個座位,若4人就坐,每人左右兩邊都有空位,那么不同的坐法有多少種?(120)練習(xí)題:10人身高

7、各不相等,排成前后排,每排5人,要求從左至右身高逐漸增加,共有多少排法? 五.重排問題求冪策略例5.把6名實(shí)習(xí)生分配到7個車間實(shí)習(xí),共有多少種不同的分法解:完成此事共分六步:把第一名實(shí)習(xí)生分配到車間有 7 種分法.把第二名實(shí)習(xí)生分配到車間也有7種分依此類推,由分步計數(shù)原理共有種不同的排法允許重復(fù)的排列問題的特點(diǎn)是以元素為研究對象,元素不受位置的約束,可以逐一安排各個元素的位置,一般地n不同的元素沒有限制地安排在m個位置上的排列數(shù)為種練習(xí)題:1 某班新年聯(lián)歡會原定的5個節(jié)目已排成節(jié)目單,開演前又增加了兩個新節(jié)目.如果將這兩個節(jié)目插入原節(jié)目單中,那么不同插法的種數(shù)為 42 2. 某8層大樓一樓電梯

8、上來8名乘客人,他們到各自的一層下電梯,下電梯的方法練習(xí)題:6顆顏色不同的鉆石,可穿成幾種鉆石圈 120六.多排問題直排策略例6.8人排成前后兩排,每排4人,其中甲乙在前排,丙在后排,共有多少排法解:8人排前后兩排,相當(dāng)于8人坐8把椅子,可以把椅子排成一排.個特殊元素有種,再排后4個位置上的特殊元素丙有種,其余的5人在5個位置上任意排列有種,則共有種一般地,元素分成多排的排列問題,可歸結(jié)為一排考慮,再分段研究. 七.排列組合混合問題先選后排策略例7.有5個不同的小球,裝入4個不同的盒內(nèi),每盒至少裝一個球,共有多少不同的裝法.解:第一步從5個球中選出2個組成復(fù)合元共有種方法.再把4個元素(包含一

9、個復(fù)合元素)裝入4個不同的盒內(nèi)有種方法,根據(jù)分步計數(shù)原理裝球的方法共有解決排列組合混合問題,先選后排是最基本的指導(dǎo)思想.此法與相鄰元素捆綁策略相似嗎?練習(xí)題:一個班有6名戰(zhàn)士,其中正副班長各1人現(xiàn)從中選4人完成四種不同的任務(wù),每人完成一種任務(wù),且正副班長有且只有1人參加,則不同的選法有 192 種八.元素相同問題隔板策略例8.有10個運(yùn)動員名額,分給7個班,每班至少一個,有多少種分配方案? 解:因?yàn)?0個名額沒有差別,把它們排成一排。相鄰名額之間形成個空隙。在個空檔中選個位置插個隔板,可把名額分成份,對應(yīng)地分給個班級,每一種插板方法對應(yīng)一種分法共有種分法。將n個相同的元素分成m份(n,m為正整

10、數(shù)),每份至少一個元素,可以用m-1塊隔板,插入n個元素排成一排的n-1個空隙中,所有分法數(shù)為練習(xí)題:1 10個相同的球裝5個盒中,每盒至少一有多少裝法? 九.正難則反總體淘汰策略例9.從0,1,2,3,4,5,6,7,8,9這十個數(shù)字中取出三個數(shù),使其和為不小于10的偶數(shù),不同的 取法有多少種?解:這問題中如果直接求不小于10的偶數(shù)很困難,可用總體淘汰法。這十個數(shù)字中有5個偶數(shù)5個奇數(shù),所取的三個數(shù)含有3個偶數(shù)的取法有,只含有1個偶數(shù)的取法有,和為偶數(shù)的取法共有。再淘汰和小于10的偶數(shù)共9種,符合條件的取法共有有些排列組合問題,正面直接考慮比較復(fù)雜,而它的反面往往比較簡捷,可以先求出它的反面

11、,再從整體中淘汰.練習(xí)題:我們班里有43位同學(xué),從中任抽5人,正、副班長、團(tuán)支部書記至少有一人在內(nèi)的抽法有多少種?十. 合理分類與分步策略例10.在一次演唱會上共10名演員,其中8人能能唱歌,5人會跳舞,現(xiàn)要演出一個2人唱歌2人伴舞的節(jié)目,有多少選派方法解:10演員中有5人只會唱歌,2人只會跳舞3人為全能演員。選上唱歌人員為標(biāo)準(zhǔn)進(jìn)行研究 只會唱的5人中沒有人選上唱歌人員共有種,只會唱的5人中只有1人選上唱歌人員種,只會唱的5人中只有2人選上唱歌人員有種,由分類計數(shù)原理共有 種。解含有約束條件的排列組合問題,可按元素的性質(zhì)進(jìn)行分類,按事件發(fā)生的連續(xù)過程分步,做到標(biāo)準(zhǔn)明確。分步層次清楚,不重不漏,

12、分類標(biāo)準(zhǔn)一旦確定要貫穿于解題過程的始終。練習(xí)題:1.從4名男生和3名女生中選出4人參加某個座 談會,若這4人中必須既有男生又有女生,則不同的選法共有34 2. 3成人2小孩乘船游玩,1號船最多乘3人, 2號船最多乘2人,3號船只能乘1人,他們?nèi)芜x2只船或3只船,但小孩不能單獨(dú)乘一只船, 這3人共有多少乘船方法. (27) 本題還有如下分類標(biāo)準(zhǔn):*以3個全能演員是否選上唱歌人員為標(biāo)準(zhǔn)*以3個全能演員是否選上跳舞人員為標(biāo)準(zhǔn)*以只會跳舞的2人是否選上跳舞人員為標(biāo)準(zhǔn)都可經(jīng)得到正確結(jié)果練習(xí)題:1.同一寢室4人,每人寫一張賀年卡集中起來,然后每人各拿一張別人的賀年卡,則四張賀年卡不同的分配方式有多少種?

13、(9)2由0,1,2,3,4,5六個數(shù)字可以組成多少個沒有重復(fù)的比大的數(shù)?解:例1 學(xué)校組織老師學(xué)生一起看電影,同一排電影票12張。8個學(xué)生,4個老師,要求老師在學(xué)生之間,且老師互不相鄰,共有多少種不同的坐法?分析 此題涉及到的是不相鄰問題,并且是對老師有特殊的要求,因此老師是特殊元素,在解決時就要特殊對待.所涉及問題是排列問題.解 先排學(xué)生共有 種排法,然后把老師插入學(xué)生之間的空檔,共有7個空檔可插,選其中的4個空檔,共有 種選法.根據(jù)乘法原理,共有的不同坐法為 種.插空法:對于某兩個元素或者幾個元素要求不相鄰的問題,可以用插入法.即先排好沒有限制條件的元素,然后將有限制條件的元素按要求插入

14、排好元素的空檔之中即可.例2 5個男生3個女生排成一排,3個女生要排在一起,有多少種不同的排法? 分析 此題涉及到的是排隊(duì)問題,對于女生有特殊的限制,因此,女生是特殊元素,并且要求她們要相鄰,因此可以將她們看成是一個元素來解決問題.因?yàn)榕旁谝黄?所以可以將3個女生看成是一個人,與5個男生作全排列,有 種排法,其中女生內(nèi)部也有 種排法,根據(jù)乘法原理,共有 種不同的排法.捆綁法:要求某幾個元素必須排在一起的問題,可以用捆綁法來解決問題.即將需要相鄰的元素合并為一個元素,再與其它元素一起作排列,同時要注意合并元素內(nèi)部也可以作排列.例3 在高二年級中的8個班,組織一個12個人的年級學(xué)生分會,每班要求至少1人,名額分配方案有多少種?小結(jié) 此題若

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論