171勾股定理1_第1頁
171勾股定理1_第2頁
171勾股定理1_第3頁
171勾股定理1_第4頁
171勾股定理1_第5頁
已閱讀5頁,還剩7頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

1、國際數(shù)學(xué)家大會(huì)是最高水平的全球性數(shù)學(xué)科學(xué)學(xué)術(shù)會(huì)議2002年在北京召開了第24屆國際數(shù)學(xué)家大會(huì)如圖就是大會(huì)的會(huì)徽的圖案,創(chuàng)設(shè)情境引入課題,問題1你見過這個(gè)圖案嗎?它由哪些基本圖形組成?,八年級(jí) 下冊,17.1勾股定理(1),追問由這三個(gè)正方形A,B,C的邊長構(gòu)成的等腰直角三角形三條邊長度之間有怎樣的特殊關(guān)系?,創(chuàng)設(shè)情境引入課題,問題2三個(gè)正方形A,B,C 的面積有什么關(guān)系?,追問正方形A、B、C 所圍成的直角三角形三條邊之間有怎樣的特殊關(guān)系?,探究勾股定理,問題3在網(wǎng)格中的一般的直角三角形,以它的三邊為邊長的三個(gè)正方形A、B、C 是否也有類似的面積關(guān)系?,猜想: 如果直角三角形兩直角邊長分別為a

2、,b,斜邊長為c,那么a2+b2=c2,探究勾股定理,問題4通過前面的探究活動(dòng),猜一猜,直角三角形三邊之間應(yīng)該有什么關(guān)系?,感受數(shù)學(xué)文化,這個(gè)圖案是公元3世紀(jì)我國漢代的趙爽在注解周 髀算經(jīng)時(shí)給出的,人們稱它為“趙爽弦圖”趙爽根 據(jù)此圖指出:四個(gè)全等的直角三角形(紅色)可以如圖 圍成一個(gè)大正方形,中間的部分是一個(gè)小正方形 (黃 色)勾股定理在數(shù)學(xué)發(fā)展中起 到了重大的作用,其證明方法據(jù) 說有400 多種,有興趣的同學(xué)可 以繼續(xù)研究,或到網(wǎng)上查閱勾股 定理的相關(guān)資料,初步應(yīng)用定理,練習(xí)1求圖中字母所代表的正方形的面積,初步應(yīng)用定理,練習(xí)2如圖,所有的三角形都是直角三角形,四邊形都是正方形,已知正方形A,B,C,D 的邊長分別是12,16,9,12求最大正方形E 的面積,初步應(yīng)用定理,通過這種方法,可以把一個(gè)正方形的面積分成若干 個(gè)小正方形的面積的和,不斷地分下去,就可以得到一 棵美麗的勾股樹,初步應(yīng)用定理,練習(xí)3 求下列直角三角形中未知邊的長度,課堂小結(jié),(1)勾股定理的內(nèi)容是什么?它有什么作用? (2)在探究勾股定理的過程中,我們經(jīng)歷了怎樣的探究過程?,課后作業(yè),作業(yè): 1整理課堂中所提到

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論