版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
1、沒有學(xué)不好的數(shù)學(xué)系列之二:初中幾何知識點詳解 證明一,證明二,證明三,解直角三角形,圓證明(一)1、本套教材選用如下命題作為公理:(1)、兩條直線被第三條直線所截,如果同位角相等,那么這兩條直線平行。(2)、兩條平行線被第三條直線所截,同位角相等。(3)、兩邊及其夾角對應(yīng)相等的兩個三角形全等。(4)、兩角及其夾邊對應(yīng)相等的兩個三角形全等。(5)、三邊對應(yīng)相等的兩個三角形全等。(6)、全等三角形的對應(yīng)邊相等、對應(yīng)角相等。此外,等式的有關(guān)性質(zhì)和不等式的有關(guān)性質(zhì)都可以看做公理。2、平行線的判定定理公理 兩條直線被第三條直線所截,如果同位角相等,那么這兩條直線平行。 簡單說成:同位角相等,兩直線平行。
2、 定理 兩條直線被第三條直線所截,如果同旁內(nèi)角互補,那么這兩條直線平行。 簡單說成:同旁內(nèi)角互補,兩直線平行。定理 兩條直線被第三條直線所截,如果內(nèi)錯角相等,那么這兩條直線平行。 簡單說成:內(nèi)錯角相等,兩直線平行。3、平行線的性質(zhì)定理公理 兩條平行線被第三條直線所截,同位角相等。 簡單說成:兩直線平行,同位角相等。 定理 兩條平行線被第三條直線所截,內(nèi)錯角相等。 簡單說成:兩直線平行,內(nèi)錯角相等。定理 兩條平行線被第三條直線所截,同旁內(nèi)角互補。 簡單說成:兩直線平行,同旁內(nèi)角互補。如果兩條直線都和第三條直線平行,那么這兩條直線也互相平行。4、三角形內(nèi)角和定理 三角形三個內(nèi)角的和等于。5、三角形
3、內(nèi)角和定理的推論三角形的一個外角等于和它不相鄰的兩個內(nèi)角的和。 三角形的一個外角大于任何一個和它不相鄰的內(nèi)角。證明(二)一、公理(1)三邊對應(yīng)相等的兩個三角形全等(可簡寫成“邊邊邊”或“sss”)。(2)兩邊及其夾角對應(yīng)相等的兩個三角形全等(可簡寫成“邊角邊”或“sas”)。(3)兩角及其夾邊對應(yīng)相等的兩個三角形全等(可簡寫成“角邊角”或“asa”)。(4)全等三角形的對應(yīng)邊相等、對應(yīng)角相等。推論:兩角及其中一角的對邊對應(yīng)相等的兩個三角形全等(可簡寫成“角角邊”或“aas”)。二、等腰三角形 1、等腰三角形的性質(zhì)(1)等腰三角形的兩個底角相等(簡稱:等邊對等角)(2)等腰三角形頂角的平分線、底
4、邊上的中線、底邊上的高互相重合(三線合一)。等腰三角形的其他性質(zhì):等腰直角三角形的兩個底角相等且等于45等腰三角形的底角只能為銳角,不能為鈍角(或直角),但頂角可為鈍角(或直角)。等腰三角形的三邊關(guān)系:設(shè)腰長為a,底邊長為b,則a等腰三角形的三角關(guān)系:設(shè)頂角為頂角為a,底角為b、c,則a=1802b,b=c=2、等腰三角形的判定方法(1)如果一個三角形有兩個角相等,那么這兩個角所對的邊也相等(簡稱:等角對等邊)。(2)有兩條邊相等的三角形是等腰三角形.三、等邊三角形性質(zhì):(1)等邊三角形的三個角都相等,并且每個角都等于60。(2)三線合一判定方法:(1)三條邊都相等的三角形是等邊三角形(2)三
5、個角都相等的三角形是等邊三角形(3)有一個角是60的等腰三角形是等邊三角形。四、直角三角形(一)、直角三角形的性質(zhì) 1、直角三角形的兩個銳角互余2、在直角三角形中,30角所對的直角邊等于斜邊的一半。3、在直角三角形中,如果一條直角邊等于斜邊的一半,那么這條直角邊所對的銳角等于304、直角三角形斜邊上的中線等于斜邊的一半5、勾股定理:直角三角形兩直角邊a,b的平方和等于斜邊c的平方,即其它性質(zhì):1、直角三角形斜邊上的高線將直角三角形分成的兩個三角形和原三角形相似。2、常用關(guān)系式:由三角形面積公式可得:兩直角邊的積=斜邊與斜邊上的高的積(等面積法)(二)、直角三角形的判定 1、有一個角是直角的三角
6、形是直角三角形。2、如果三角形一邊上的中線等于這邊的一半,那么這個三角形是直角三角形。3、勾股定理的逆定理如果三角形的三邊長a,b,c有關(guān)系,那么這個三角形是直角三角形。(三)直角三角形全等的判定:對于特殊的直角三角形,判定它們?nèi)葧r,還有hl定理(斜邊、直角邊定理):有斜邊和一條直角邊對應(yīng)相等的兩個直角三角形全等(可簡寫成“斜邊、直角邊”或“hl”)五、角的平分線及其性質(zhì)與判定1、角的平分線:從一個角的頂點引出的一條射線,把這個角分成兩個相等的角,這條射線叫做這個角的平分線。2、角的平分線的性質(zhì)定理:角平分線上的點到這個角的兩邊的距離相等。定理:三角形的三條角平分線相交于一點(三角形的內(nèi)心)
7、,并且這一點到三條邊的距離相等。3、角的平分線的判定定理:在一個角的內(nèi)部,且到角的兩邊距離相等的點在這個角的平分線上。六、線段垂直平分線的性質(zhì)與判定1、線段的垂直平分線:垂直于一條線段并且平分這條線段的直線是這條線段的垂直平分線。線段垂直平分線的性質(zhì)定理:線段垂直平分線上的點和這條線段兩個端點的距離相等。定理:三角形三條邊的垂直平分線相交于一點(三角形的外心),并且這一點到三個頂點的距離相等。線段垂直平分線的判定定理:到一條線段兩個端點距離相等的點,在這條線段的垂直平分線上。七、反證法八、互逆命題、互逆定理1、在兩個命題中,如果一個命題的條件和結(jié)論分別是另一個命題的結(jié)論和條件,那么這兩個命題稱
8、為互逆命題,其中一個命題稱為另一個命題的逆命題。2、如果一個定理的逆命題經(jīng)過證明是真命題,那么它也是一個定理,這兩個定理稱為互逆定理,其中一個定理稱為另一個定理的逆定理。 證明(三)一、平行四邊形 1、平行四邊形的定義兩組對邊分別平行的四邊形叫做平行四邊形。2、平行四邊形的性質(zhì)(1)平行四邊形的對邊平行且相等。(2)平行四邊形相鄰的角互補,對角相等(3)平行四邊形的對角線互相平分。(4)平行四邊形是中心對稱圖形,對稱中心是對角線的交點。常用點:(1)若一直線過平行四邊形兩對角線的交點,則這條直線被一組對邊截下的線段的中點是對角線的交點,并且這條直線二等分此平行四邊形的面積。(2)推論:夾在兩條
9、平行線間的平行線段相等。3、平行四邊形的判定(1)定義:兩組對邊分別平行的四邊形是平行四邊形(2)定理1:兩組對角分別相等的四邊形是平行四邊形(3)定理2:兩組對邊分別相等的四邊形是平行四邊形(4)定理3:對角線互相平分的四邊形是平行四邊形(5)定理4:一組對邊平行且相等的四邊形是平行四邊形4、平行四邊形的面積s平行四邊形=底邊長高=ah二、矩形 1、矩形的定義有一個角是直角的平行四邊形叫做矩形。2、矩形的性質(zhì)(1)矩形的對邊平行且相等(2)矩形的四個角都是直角(3)矩形的對角線相等且互相平分(4)矩形既是中心對稱圖形又是軸對稱圖形;對稱中心是對角線的交點(對稱中心到矩形四個頂點的距離相等);
10、對稱軸有兩條,是對邊中點連線所在的直線。3、矩形的判定(1)定義:有一個角是直角的平行四邊形是矩形(2)定理1:有三個角是直角的四邊形是矩形(3)定理2:對角線相等的平行四邊形是矩形4、矩形的面積s矩形=長寬=ab三、菱形 1、菱形的定義有一組鄰邊相等的平行四邊形叫做菱形2、菱形的性質(zhì)(1)菱形的四條邊相等,對邊平行(2)菱形的相鄰的角互補,對角相等(3)菱形的對角線互相垂直平分,并且每一條對角線平分一組對角(4)菱形既是中心對稱圖形又是軸對稱圖形;對稱中心是對角線的交點(對稱中心到菱形四條邊的距離相等);對稱軸有兩條,是對角線所在的直線。3、菱形的判定(1)定義:有一組鄰邊相等的平行四邊形是
11、菱形(2)定理1:四邊都相等的四邊形是菱形(3)定理2:對角線互相垂直的平行四邊形是菱形4、菱形的面積s菱形=底邊長高=兩條對角線乘積的一半四、正方形 (310分) 1、正方形的定義有一組鄰邊相等并且有一個角是直角的平行四邊形叫做正方形。2、正方形的性質(zhì)(1)正方形四條邊都相等,對邊平行(2)正方形的四個角都是直角 (3)正方形的兩條對角線相等,并且互相垂直平分,每一條對角線平分一組對角(4)正方形既是中心對稱圖形又是軸對稱圖形;對稱中心是對角線的交點;對稱軸有四條,是對角線所在的直線和對邊中點連線所在的直線。3、正方形的判定判定一個四邊形是正方形的主要依據(jù)是定義,途徑有兩種:先證它是矩形,再
12、證它是菱形。先證它是菱形,再證它是矩形。4、正方形的面積設(shè)正方形邊長為a,對角線長為bs正方形=五、等腰梯形1、等腰梯形的定義兩腰相等的梯形叫做等腰梯形。2、等腰梯形的性質(zhì)(1)等腰梯形的兩腰相等,兩底平行。(2)等腰梯形同一底上的兩個角相等,同一腰上的兩個角互補。(3)等腰梯形的對角線相等。(4)等腰梯形是軸對稱圖形,它只有一條對稱軸,即兩底的垂直平分線。3、等腰梯形的判定(1)定義:兩腰相等的梯形是等腰梯形(2)定理:在同一底上的兩個角相等的梯形是等腰梯形(3)對角線相等的梯形是等腰梯形。(選擇題和填空題可直接用)六、三角形中的中位線1、三角形的中位線:連接三角形兩邊中點的線段叫做三角形的
13、中位線。2、三角形中位線定理:三角形的中位線平行于第三邊,并且等于它的一半。3、常用結(jié)論:任一個三角形都有三條中位線,由此有:結(jié)論1:三條中位線組成一個三角形,其周長為原三角形周長的一半。結(jié)論2:三條中位線將原三角形分割成四個全等的三角形。結(jié)論3:三條中位線將原三角形劃分出三個面積相等的平行四邊形。結(jié)論4:三角形一條中線和與它相交的中位線互相平分。結(jié)論5:三角形中任意兩條中位線的夾角與這夾角所對的三角形的頂角相等。七、有關(guān)四邊形四邊中點問題的知識點:(1)順次連接任意四邊形的四邊中點所得的四邊形是平行四邊形;(2)順次連接矩形的四邊中點所得的四邊形是菱形;(3)順次連接菱形的四邊中點所得的四邊
14、形是矩形;(4)順次連接等腰梯形的四邊中點所得的四邊形是菱形;(5)順次連接對角線相等的四邊形四邊中點所得的四邊形是菱形;(6)順次連接對角線互相垂直的四邊形四邊中點所得的四邊形是矩形;(7)順次連接對角線互相垂直且相等的四邊形四邊中點所得的四邊形是正方形; 解直角三角形 知識點總結(jié)考點一、直角三角形的性質(zhì) (35分) 1、直角三角形的兩個銳角互余可表示如下:c=90a+b=902、在直角三角形中,30角所對的直角邊等于斜邊的一半。 a=30可表示如下: bc=ab c=903、直角三角形斜邊上的中線等于斜邊的一半 acb=90 可表示如下: cd=ab=bd=ad d為ab的中點4、勾股定理
15、直角三角形兩直角邊a,b的平方和等于斜邊c的平方,即5、攝影定理在直角三角形中,斜邊上的高線是兩直角邊在斜邊上的攝影的比例中項,每條直角邊是它們在斜邊上的攝影和斜邊的比例中項acb=90 cdab 6、常用關(guān)系式由三角形面積公式可得:abcd=acbc考點二、直角三角形的判定 (35分) 1、有一個角是直角的三角形是直角三角形。2、如果三角形一邊上的中線等于這邊的一半,那么這個三角形是直角三角形。3、勾股定理的逆定理如果三角形的三邊長a,b,c有關(guān)系,那么這個三角形是直角三角形??键c三、銳角三角函數(shù)的概念 (38分) 1、如圖,在abc中,c=90 銳角a的對邊與斜邊的比叫做a的正弦,記為si
16、na,即 銳角a的鄰邊與斜邊的比叫做a的余弦,記為cosa,即銳角a的對邊與鄰邊的比叫做a的正切,記為tana,即2、銳角三角函數(shù)的概念銳角a的正弦、余弦、正切、余切都叫做a的銳角三角函數(shù)3、一些特殊角的三角函數(shù)值三角函數(shù) 30 45 60sincostan14、各銳角三角函數(shù)之間的關(guān)系(1)互余關(guān)系sina=cos(90a),cosa=sin(90a)(2)平方關(guān)系(3)倒數(shù)關(guān)系tanatan(90a)=1(4)弦切關(guān)系tana=5、銳角三角函數(shù)的增減性當(dāng)角度在090之間變化時,(1)正弦值隨著角度的增大(或減小)而增大(或減?。?)余弦值隨著角度的增大(或減?。┒鴾p?。ɑ蛟龃螅?)正切
17、值隨著角度的增大(或減小)而增大(或減?。┛键c四、解直角三角形 (35) 1、解直角三角形的概念在直角三角形中,除直角外,一共有五個元素,即三條邊和兩個銳角,由直角三角形中除直角外的已知元素求出所有未知元素的過程叫做解直角三角形。2、解直角三角形的理論依據(jù)在rtabc中,c=90,a,b,c所對的邊分別為a,b,c(1)三邊之間的關(guān)系:(勾股定理)(2)銳角之間的關(guān)系:a+b=90(3)邊角之間的關(guān)系: 知識點總結(jié)圓與三角形、四邊形一樣都是研究相關(guān)圖形中的線、角、周長、面積等知識。包括性質(zhì)定理與判定定理及公式。集合:圓:圓可以看作是到定點的距離等于定長的點的集合;圓的外部:可以看作是到定點的距
18、離大于定長的點的集合;圓的內(nèi)部:可以看作是到定點的距離小于定長的點的集合軌跡:1、到定點的距離等于定長的點的軌跡是:以定點為圓心,定長為半徑的圓;2、到線段兩端點距離相等的點的軌跡是:線段的中垂線;3、到角兩邊距離相等的點的軌跡是:角的平分線;4、到直線的距離相等的點的軌跡是:平行于這條直線且到這條直線的距離等于定長的兩條直線;5、到兩條平行線距離相等的點的軌跡是:平行于這兩條平行線且到兩條直線距離都相等的一條直線點與圓的位置關(guān)系:點在圓內(nèi) dr 點a在圓外直線與圓的位置關(guān)系:直線與圓相離 dr 無交點 直線與圓相切 d=r 有一個交點 直線與圓相交 dr+r外切(圖2) 有一個交點 d=r+
19、r相交(圖3) 有兩個交點 r-rdr+r內(nèi)切(圖4) 有一個交點 d=r-r內(nèi)含(圖5) 無交點 dr-r垂徑定理:垂徑定理:垂直于弦的直徑平分這條弦,并且平分弦所對的弧推論1:(1)平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條??; (2)弦的垂直平分線經(jīng)過圓心,并且平分弦所對的兩條??; (3)平分弦所對的一條弧的直徑,垂直平分弦,并且平分弦所對的另一條弧 以上共4個定理,簡稱2推3定理:此定理中共5個結(jié)論中,只要知道其中2個即可推出其它3個結(jié)論,即: ab是直徑 abcd ce=de 推論2:圓的兩條平行弦所夾的弧相等。 即:在o中,abcd圓心角定理圓心角定理:同圓或等圓中,相
20、等的圓心角所對的弧相等,所對的弦相等,所對的弦心距相等此定理也稱1推3定理,即上述四個結(jié)論中,只要知道其中的1個相等,則可以推出其它的3個結(jié)論也即:aob=doe ab=de oc=of 圓周角定理圓周角定理:同一條弧所對的圓周角等于它所對的圓心的角的一半即:aob和acb是 所對的圓心角和圓周角 aob=2acb圓周角定理的推論:推論1:同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧是等弧即:在o中,c、d都是所對的圓周角 c=d推論2:半圓或直徑所對的圓周角是直角;90的圓周角所對的弧是半圓,所對的弦是直徑即:在o中,ab是直徑 或c=90 c=90 ab是直徑推論3:三角形一邊上的中線等于這邊的一半,那么這個三角形是直角三角形即:在abc中,oc=oa=ob abc是直角三角形或c=90注:此推論實是初二年級幾何中矩形的推論:在直角三角形中斜邊上的中線等于斜邊的一半的逆定理。弦切角定理: 弦切角等于所夾弧所對的圓周角推論:如果兩個弦切角所夾的弧相等,那么這兩個弦切角也相等。即:mn是切線,ab是弦 bam=bca圓內(nèi)接四邊形圓的內(nèi)接四邊形定理:圓的內(nèi)接四邊形的對角互補,外角等于它的內(nèi)對角。即:在o中,四邊形abcd是內(nèi)接四邊形 c+bad=180 b+d=180 dae=c切線的性質(zhì)定理與判定定理(1)判定定理:過半徑外端且垂直于半徑的直線是切線
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年特定項目融資保密協(xié)議范本
- 2024年頂管施工合作協(xié)議模板
- 2024年新汽車抵押借款協(xié)議示例
- 反擔(dān)保借款協(xié)議模板:公司風(fēng)險共擔(dān)條款
- 2024年貨車出租協(xié)議樣本
- 2024年進口天然石材荒料銷售協(xié)議
- 2024年創(chuàng)新型醫(yī)療器械研發(fā)合作協(xié)議
- 2024商業(yè)交易促成居間協(xié)議樣本
- 2024年度跨國商業(yè)合作協(xié)議模板
- 2024年工業(yè)產(chǎn)品銷售代理規(guī)范協(xié)議
- 安全使用家電和煤氣課件
- 《GPS測量與數(shù)據(jù)處理》-第3講 全球定位系統(tǒng)組成及信號結(jié)構(gòu)
- 前置胎盤詳解課件
- 達爾文的“進化論”課件
- 國開電大《建筑測量》實驗報告1
- 《火災(zāi)自動報警系統(tǒng)設(shè)計規(guī)范》
- 南京市小學(xué)一年級語文上學(xué)期期中試卷
- 合肥工業(yè)大學(xué)-孫冠東-答辯通用PPT模板
- 國開作業(yè)《管理學(xué)基礎(chǔ)》管理實訓(xùn):第一章訪問一個工商企業(yè)或一位管理者參考(含答案)280
- 膀胱過度活動癥的診斷與治療
- 幼兒園繪本故事:《神奇雨傘店》 課件
評論
0/150
提交評論