




已閱讀5頁,還剩1頁未讀, 繼續(xù)免費閱讀
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
BirgittaLanttoPetterKrusJan-OvePalmbergDivisionofFluidPowerTechnology,DepartmentofMechanicalEngineering,LinkdpingUniversity,S-58183Linkoping,SwedenDynamicPropertiesofLoad-SensingSystemsWithInteractingComplexMechanicalLoadsAload-sensingfluidpowersystemisafeedbacksystemwithseveraltypesofinstabilitymodes.Thispaperdealswithoneofthem,whereloadinteractionthroughamechanicalstructureandthefluidpowersystemmaycauseinstability,e.g.inalorrycrane.Criteriaforinstabilityareevaluated.Thispaperalsoproposessomemethodshowtoavoidthistypeofinstability.IntroductionThehigh-energysavingpotentialofload-sensingsystemsisaspecialadvantage,especiallywhentheconfigurationincludesavariablepump.Controllabilityofsuchsystemsmaybeenhancedbypressure-compensatedcontrolvalvessinceinteractionbetweentheactivatedloadscanbeavoided(seeFig.1).However,thistypeofsystemisafeedbacksystemand,unfortunately,alsoextremelyundamped.Therefore,itisnotunlikelythatinstabilitytakesplaceinsuchsystems.Generally,themostriskyfeedbackisthepumppressureandhighestloadpressurefeedbackscontrollingthepumpregulatorwhichcouldleadtotheso-calledpumpandpump-loadinstabilities,seeKrus(1989).Thereisalsoariskofinstabilityattheloadifafeedbackcomponentsuchasanover-centrevalvecontrolstheactuator.AthirdtypeofinstabilityisdiscussedinLantto(1992).Whenseveralactuatorscontrolthesamemechanicalstructure,e.g.acranearm,theyinteractthroughthestructureandthefluidpowersystem.Then,afeedbackcouldbecreatedasinFig.2whereamovementoftheactuatorwiththelowestloadchangesthehighestloadpressureandthereforetheload-sensingpumppressurewhichchangestheflowtothelowestload.Suchdestabilizinginteractionhasearlierbeenanalyzedbye.g.Rama-chandran(1982)andPannala(1985).Thispapergivesadeeperdiscussionaboutthisthirdtypeofinstabilityrisk,mainlyfoundinload-sensingsystems.ThestabilityanalysisinthispaperisbasedonKrus(1988),Krus(1989),Palmbergetal.(1985),andLantto(1992)andconcernsmainlysystemswithnoncompensatedcontrolvalves.Onlysystemswithanunsaturatedload-sensingpumparediscussedhere.Moreover,onlypositivemassandinertialoadsareconsidered.InstabilityBecauseofLoadInteractionThroughtheMechanicalStructureInthissection,wewillshowhowinstabilitycanbeevaluatedforastructurecontrolledbyanidealload-sensingsystem.ThisContributedbytheDynamicSystemsandControlDivisionforpublicationintheJOURNALOFDYNAMICSYSTEMS,MEASUREMENT,ANDCONTROL.ManuscriptreceivedbytheDynamicSystemsandControlDivisionMarch25,1991;revisedmanuscriptreceivedJuly1992.AssociateTechnicalEditor:A.Akers.sectionwillalsodiscusswhenanormallorrycranereachesinstability.Sincethistypeofinstabilityisdependentonboththefluidpowersystemandthegeometryofthemechanicalstructure,thedesignofthestructureandthefluidpowersystemwillbediscussed.Theanalysiswillshowthatthisinstabilitygenerallymayoccurif1)apositive(ornegative)movementofthelowestloadwillcauseanegative(apositive,respectively)movementofthehighestloadthroughthemechanicalstructureand2)ifafeedbackcomponentcontrolsthesystemsothatanincreaseofthehighestloadpressurewillcauseanincreaseoftheloadflowtothelowestloadthroughthefluidpowersystem.InstabilityinaLoad-SensingSystem.ThesimplestructureinFig.3,controlledbytwocylindersinaload-sensingsystemwithnoncompensatedcontrolvalves,hasthefollowingequa-Fig.1Load-sensingsystemincludingcontrolvalveswithconventionalpressurecompensatorspools/.vHighestloadLoadflowfrLowestload4Loadsensingpressure4Fig.2FeedbackthroughthemechanicalstructureJournalofDynamicSystems,Measurement,andControlSEPTEMBER1993,Vol.115/525Copyright1993byASMEDownloaded22Mar2009to87.RedistributionsubjecttoASMElicenseorcopyright;see/terms/Terms_Use.cfmFig.3Load-sensingsystemwithloadinteractionthroughasimplifiedmechanicalstructuretionsofmotion,describingthesmallmovementsofthetwopistonsinthefrequencydomain:s2/AXLjAXL2,00B2AXi2,ALlJLl-AolUPolAL2APL2-A02AP0%(1)TheyformthetransferfunctionsGmAandGh2ofthemechanicalloadinAppendixwhereM=ml+m2,Bi=bi,M2=m2andB2=b2,whileMfi1=MKi2=m2formsthetransferfunctionsofthemechanicalcouplingasG,=GK2=-AL1AL2m2sALxALlm2s(2)(3)TheseequationsandtheAppendixformtheblockdiagraminFig.4whichdescribesageneralload-sensingsystemwithloadinteractionthroughthemechanicalstructure(blocksGKilandGKi2)andthefluidpowersystem.rf%FKEFig.4Blockdiagramofaload-sensingsystemwithloadinteractionThenextstepistoanalyzethisfeedbacksystembyreducingtheblockdiagramintoclosed-looptransferfunctionswheretheoutputsignalsAXLiandAXL,2arefunctionsofAXViiandAA,seeLantto(1992).Then,thecharacteristicequationisfoundas1H,iiG,ni-+1+G;GmlHmGn+FLSCGmxGvHL2Gmirt+C/j.2j/-pumpGm2G+FLSGn1HLGKj1HL2GK1-+G+G.-Hm-HmGPl+FLsGpGmiGGmiHmH,l+Hsp(Gn+G2+Gp)=0(4)(5)AB,bCdPDLF(s)G(s)H(s)JkKc=area,m2=viscousdampingcoefficientofactuator,Ns/m=volumecapacitance(=V7/3e),m3/Pa=volumetricgradientofpumpdisplacement,mVrev=motor(load)displacement,mVrev=filtertransferfunction=transferfunctionwhereoutputisnormallyflowwhileinputispressure.Theflowisoutputandvalvedisplacementinputwhenthesubscriptisx.=transferfunctionwhereoutputispressurewhileinputisflow.=inertia,kgm=springcoefficient,N/m=flow-pressurecoeff.oforifice(=dq/d(pm-POM),m3/(sPa)KqL,lM,mnPqsVXHe6APe01=flowgainofvalveorifice(=3#/dxvalve),m2/s=length,m=mass,kg=pumpspeed,rev/s=pressure,Pa=flow,m3/s=Laplacetransformoperator,rad/s=volume,m3=displacement,m=effectivebulkmodulus,Pa=dampingratio=smallvariationinalinearizedvariable.=density,kg/m3=angle,rad=frequency,subscriptindicatesabreakfrequency,rad/s.CapitalletterofavariablemayindicateaLaplace-transformedvariable.SubscriptLLSm0PregTVK12J=meter-insideofcylinderload-sensinglinemechanicalloadmeter-outsideofcylinderpumppumpregulatorpump(supply)volumetankcontrolvalveorvalvepackageloadwhichcouplestheactuatorsthroughthestructurethehighestloadthesecondhighestloadshortnoteinsubscript,e.g.,&L,Imeansu526/Vol.115,SEPTEMBER1993TransactionsoftheASMEDownloaded22Mar2009to87.RedistributionsubjecttoASMElicenseorcopyright;see/terms/Terms_Use.cfmAfirstglanceatthisequationusingthefollowingsimplifications:9Aninfinitelyfastpumppressurecontrolwithoutleakagemodelledasaninductance,Gp=l/(LpS)oowhichleadsto#pumP=1/Gp,andconsequentlyAPsAPLii.9Noorificeintheload-sensingline,FLS1.8Constantpressureonthemeter-outsideofthepistons,AP0il=0otAoA=0leadingtoG,AGm1respectivelyAP0i20orAOi20leadingtoG,2=Gm,2.8OnlymassloadswithoutspringforcesandwiththeonlyviscousfrictionappearinginthecylindersareanalyzedwhichleadtoGKAALAALa/(MK%2s)andGK%1=ALAAL1/MKAS).8NodynamicsinthecontrolvalvesleadingtoGAjjG.jsandKCiVy2,respectively.9B2Kc,v,iA2Ltlofthelowestload.givesthefollowingcharacteristicequationwhere=ALAAL,2/(MKACLA)and4,i=ALAALa/(MK:2CL,2).2+-5+12B.Assumethat:+(8)25ilL,KcBx!j-1Then,uAandwfiwillbeachievedfromEqs.(6)and(7)as(9)uA2(10),/WiV1+vw2.,2-.2,wawi2If,/WiVV1-/1W(i(j)iilcoflandcouii2WB.Equations(6)and(7)givethedampingratios8,4andbB.Negativedampingratiosshowoninstability.Here,itispossibletoshowthat5BwillbepositivesincethemassmatrixinEq.(1)mustbepositivesemidefiniteorMKlMK2MlM2(12)motorspeed9L(rad/s)15motorspeed0.(rad/s)ISm45cm3/rovTime(s)10tA/(2ic)*1.52Hz&J(SK)-10.0Hz5.=-0.01-55cm/iw5Time(s)10oiA/(2*).1.70Hzeg/fa)-11.0HzS.-0.005Fig.5Timesimulationsofaload-sensingsystemwithtwointeracting,fixeddisplacementmotorswiththedisplacementsDti1(highestload)andDL2whenDt|1DL2.Thehighestloadstartsat0s,theotherat5sec.KCnM2-MKlALli-40LhWA2iA12UBKCnM,ALl-A72M-2-21!dl2WB(13)TheequationshowsonstabilityonlywhenM212L22ALlAL2BiCLjKc2UA20LXB2CL2Kr.2A2(14)Assumingnoviscousfrictioninthecylinder,B2=0,andnt=0inthesimplifiedcaseinFig.3,whereMKA=M2m2,leadsustothefollowingcrudecriterionsincewAwLAandoBoo:Ifinstabilityshalloccurinthesystem,thepistonareaAL,2ofthelowestloadmustbelargerthanthepistonareaALAofthehighestload.ThismeansthatforthemechanicalstructureinFig.3,instabilitywillalwaysoccursincetheactuatorwiththehighestpressurehasthesmallestpistonarea,seeFig.5.Inreality,thismaynotalwayshappensincethesimplificationsprecedingEq.(6)normallyarenotfulfilledwhichincreasesthedampingandconsequentlythestabilitymarginofthesystem.DesignAspectsofAvoidingInstability.Thisinstabilitytypehasitsoriginineffectivenegativedampingratioofthelowestloadinthetwo-loadsituation.Toincreasethedampingratiooftheactuatorisconsequentlystabilizinge.g.withthemeter-outorifice.Asmentionedearlier,thefeedbacknormallypassesbetweentheactuatorsthroughthemechanicalstructure,butalsothroughtheload-sensinglinetothepumpandpumppressurevolume.Thebestwaytoreducetheinstabilityriskshouldthereforebetodesignthemechanicalstructureproperly.Thisrequiresthatalargemassorinertiaofthedynamiccouplingfromthelowestloadtothehighest,MKUmustbeavoided.Howtocalculatethismassandothersisgivenasanexampleinthenextchapterforalorrycranearm.AflexiblestructureJournalofDynamicSystems,Measurement,andControlSEPTEMBER1993,Vol.115/527Downloaded22Mar2009to87.RedistributionsubjecttoASMElicenseorcopyright;see/terms/Terms_Use.cfmFig.6ModelofalorrycranestructureTotallengthofcylinder1(m)(highesthad)maxTotallengthofcylinder2(m)HighriskFig.7Variousvaluesof2bAlvAAj(mKcv2)asafunctionofthepistondisplacementsofthelorrycrane.Negativevaluesindicatedestabiliza-tionoftheoscillations,whilepositivevaluesindicatestabilization.isalsostabilizingcomparedwithastiffone.Thefeedbacksignalthroughaload-sensingpumpisalsostoppedbyalowpassfilter,thatisanorifice,intheload-sensinglinesinceithastopassthisline.Italsoseemsasifafastpumppressurecontrolintheload-sensingsystemmayeasetheinteractionbetweentheactuatorsthroughthefluidpowersystemandincreasetheriskofinstability.Topressure-compensatethecontrolvalveofthelowestload(s)intheload-sensingsystemreducestheinstabilityrisksinceKC:2isclosetozeroofavalvepackagewithafastandidealpressurecompensatorspoolsuchasinFig.1.AnExample:InstabilityofaLorryCraneArm.Will2hA/wAinEq.(13)bepositiveforthelorrycranestructureinFig.6?Aroughcriterionofacranearmisachievedifthefollowingassumptionsaremade:ThestructureisstiffThemassofthestructureislumpedintotheloadmassm9TheboomisthehighestloadOnlypositiveloadsarediscussed,92-90deg.TheLagrangeequationdescribesthemovementsofthestructure.TisthekineticenergyandMejthetorquefortheangle0-,.d(dfdT,jtw-wMe,=1-2m(kl(eue2)+y2m(eue2)(15)T=-Llcos(dl)+L2cos(62)jLisinO+Zsin)(16)(17)Time(sec)Time(sec)Fig.8Measurementsonthelorrycrane.Thecranepositionintheleftdiagramgaveinstability.M0Mr,ALiAPLi-A0lAPol-BlSAXLlh)AL2APL2-A02AP02-B2sAXL2(18)Foracranestructure,the0,-0,-terms(ij)canbeneglectedcomparedtotheaccelerationterms(i=j).Then,thefollowingdynamicequationsofmotionyieldinthefrequencydomain:Z.,L2cos(0,-02)/,-h0l2iAX,LL2cos(di-d2)LA0,A62iA0lAP0l-BtsAXLlAL2APLl-A02AP02-B2sAXL2ALlAPLliiAX,i-2,/,0-hhA0,A0-(19)(20)Equations(18)and(19)canbereducedtothesameformasinEq.(1)whereM=mLi+Ll+2LlL2cos(ei-d2)M2-mMKX=MK2=mL1L2cos(61-62)+LJ(21)(22)(23)Todescribetheinstabilityrisk,onecontourplotof2bA/uAAi2/(mKCyV2)havebeenmade,implementedonafull-sizelorrycrane,HIAB070fromHIAB-Foco.Thisplot,inFig.7,hasbeendrawnfora
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 室內(nèi)設(shè)計量房標準流程
- 醫(yī)護聯(lián)動:溝通與協(xié)作
- Acid-PEG4-NHS-ester-生命科學試劑-MCE
- 2025年人工智能法律政策圖景研究報告
- 新能源汽車充電設(shè)施布局優(yōu)化與2025年運營效率提升風險控制策略
- 智能家居系統(tǒng)互聯(lián)互通標準下的智能家居行業(yè)市場細分及競爭格局報告
- 2025年醫(yī)藥行業(yè)CRO模式下的臨床試驗數(shù)據(jù)監(jiān)查員培訓(xùn)與認證報告
- 紡織服裝制造業(yè)智能化生產(chǎn)智能化生產(chǎn)設(shè)備技術(shù)升級項目報告
- 教育游戲化在虛擬現(xiàn)實教育中的應(yīng)用與教學創(chuàng)新報告
- 2025年土壤污染修復(fù)技術(shù)產(chǎn)業(yè)現(xiàn)狀與發(fā)展趨勢研究報告
- 科室vte管理制度
- 中小學美術(shù)教學評價構(gòu)建及實施策略
- 江蘇省揚州市2024-2025學年四年級下學期6月數(shù)學期末試題一(有答案)
- 2024年西南醫(yī)科大學招聘專職輔導(dǎo)員真題
- 建設(shè)工程動火管理制度
- 保育師操作考試題及答案
- 學校公務(wù)外出管理制度
- 天津市部分區(qū)2025年九年級下學期中考二模數(shù)學試卷(含詳解)
- 廣東省珠海市文園中學2025屆七下數(shù)學期末質(zhì)量跟蹤監(jiān)視試題含解析
- 公共組織績效評估-形考任務(wù)二(占10%)-國開(ZJ)-參考資料
- AI驅(qū)動的智能汽車故障診斷系統(tǒng)
評論
0/150
提交評論