




全文預覽已結束
下載本文檔
版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
AMathematicalModelfortheMechanicalEtchingofGlassJ.H.M.tenThijeBoonkkampTechnischeUniversiteitEindhoven,DepartmentofMathematicsandComputerSciencetenthijewin.tue.nlSummary.Anonlinearfirst-orderPDEdescribingthedisplacementofaglasssur-facesubjecttosolidparticleerosionispresented.Theanalyticalsolutionisderivedbymeansofthemethodofcharacteristics.Alternatively,theEngquist-Osherschemeisappliedtocomputeanumericalsolution.Keywords:solidparticleerosion,kinematiccondition,singlePDEoffirstorder,characteristic-stripequations,Engquist-Osherscheme1IntroductionSomemoderntelevisiondisplayshaveavacuumenclosure,thatisinternallysupportedbyaglassplate.Thisplatemaynothinderthedisplayfunction.Forthatreasonithastobeaccuratelypatternedwithsmalltrenchesorholessothatelectronscanmovefreelyfromthecathodetothescreen.Onemethodtomanufacturesuchglassplatesistocoveritwithanerosion-resistantmaskandblastitwithanabrasivepowder.InSection2wepresentanonlinearfirst-orderPDEmodellingthisso-calledsolidparticleerosionprocess.Next,inSection3,wepresenttheanalyticalsolutionusingthemethodofcharac-teristics.Alternatively,inSection4,webrieflydescribeanumericalsolutionprocedure.2MathematicalModelforPowderErosionInthissectionweoutlineamathematicalmodelforsolidparticleerosion,toproducethintrenchesinaglassplate;formoredetailssee4.Consideraninitiallyflatsubstrateofbrittlematerial,coveredwithaline-shapedmask.Weintroducean(x,y,z)-coordinatesystem,wherethe(x,y)-planecoincideswiththeinitialsubstrateandthepositivez-axisisdirectedAMathematicalModelfortheMechanicalEtchingofGlass387intothematerial.Acontinuousfluxofalumina(Al2O3)particles,directedinthepositivez-direction,hitsthesubstrateathighvelocityandremovesmaterial.Thepositionz=(x,t)ofthetrenchsurfaceattimetisgovernedbythekinematicconditiont+(x)f(x)=0,0x0,(1)wherexisthetransversecoordinateinthetrench,andwhere(x)istheparticlemassflux,whichwillbespecifiedlater.Thespatialvariablesandxarescaledwiththetrenchwidthandthetimetwithacharacteristictimeneededtopropagateasurfaceatnormalimpactoverthiswidth.Thefunctionf=f(p)in(1)isdefinedbyf(p):=parenleftbig1+p2parenrightbigk/2,(2)withkaconstant(2k4).Atheoreticalmodelpredictsthevaluek=7/3,3.Equation(1)issupplementedwiththefollowinginitialandboundaryconditions:(x,0)=0,0x0.(3b)Theboundaryconditionsin(3b)meanthatthetrenchcannotgrowattheendsx=0andx=1.3AnalyticalSolutionMethodWecanwriteequation(1)inthecanonicalformF(x,t,p,q):=q(x)parenleftbig1+p2parenrightbigk/2=0,(4)withp:=xandq:=t.Thesolutionof(4)canbeconstructedfromthefollowingIVPforthecharacteristic-stripequations1dxds=Fp=(x)kp(1+p2)k/2+1,x(0;)=,(5a)dtds=Fq=1,t(0;)=0,(5b)dds=pFp+qFq=(x)1+(k+1)p2(1+p2)k/2+1,(0;)=0,(5c)dpds=(Fx+pF)=prime(x)1(1+p2)k/2,p(0;)=0,(5d)dqds=(Ft+qF)=0,q(0;)=(),(5e)388J.H.M.tenThijeBoonkkampwheresandaretheparametersalongthecharacteristicsandtheinitialcurve,respectively.Notethatthesolutionof(5b)and(5e)istrivial,andwefindt(s;)=sandq(s;)=().Inordertomodelthefiniteparticlesize,whichmakesthatparticlesclosetothemaskarelesseectiveintheerosionprocess,weintroducetransi-tionregionsofthickness.Weassumethat(x)increasescontinuouslyandmonotonicallyfrom0attheboundariesofthetrenchto1atx=,1.Theparameterischaracteristicofthe(dimensionless)particlesizeandatypicalvalueis=0.1.Weadoptthesimplestpossiblechoicefor(x),i.e.,(x)=x/if0x,1ifx1,(1x)/if1x1.(6)Asaresultof(6),thegrowthrateofthesurfacepositionclosetothemaskissmallerthaninthemiddleofthehole.Since(0)=(1)=0,weobtainfrom(5)thesolutionsx(t;0)=(t;0)=0andx(t;1)=1,(t;1)=0,implyingthattheboundaryconditions(3b)forareautomaticallysatisfied.Byintroducingtransitionregions,wecreateintersectingcharacteristics.Therefore,thesolutionof(4)canonlybeaweaksolutionanditisanticipatedthatshockswillemergefromtheedgesx=andx=1.Letx=s,1(t)andx=s,2(t)denotethelocationoftheshocksattimetoriginatingatx=andx=1,respectively.Eachpoint(s,i(t),t)(i=1,2)ontheseshocksisconnectedtotwodierentcharacteristicsthatexistonbothsidesoftheshocks.Thespeedoftheseshocksisgivenbythejumpconditionds,idtp=(x)(1+p2)k/2,(i=1,2),(7)wherepdenotesthejumpofpacrosstheshock.Thus,wecandistinguishthefollowingfiveregionsinthe(x,t)-plane:thelefttransitionregion0x00.20.40.60.8100.10.20.30.40.50.60.70.80.91xtFig.1.Characteristicsandshocksof(5),for=0.1andk=2.33.AMathematicalModelfortheMechanicalEtchingofGlass389(region1),therighttransitionregion1x1(region2),theinteriordomainleftofthefirstshock(region3),theinteriordomainrightofthesecondshock(region4)andtheregionbetweenthetwoshocks(region5);seeFig.1.Note,thatthelocationoftheshocksdependsonthesolutionthrough(7).Wecanderivetheanalyticalsolutionof(5)intheregions1,3and5,coupledwithanumericalsolutionof(7).Thesolutionintheothertworegionfollowsbysymmetry;formoredetailssee4.TheresultsarecollectedinFig.2,whichgivesthesolutionforandpattimelevelst=0.0,0.1,.,1.0for=0.1andk=2.33.Thisfigurenicelydisplaysthefeaturesofthesolution:aslantedsurfaceinthetransitionregions,aflatbottomintheinteriordomainandacurvedsurfaceinbetween.Also,inwardlypropagatingshocksareclearlyvisible.00.20.40.60.8100.10.20.30.40.50.60.70.80.91x00.20.40.60.813210123xpFig.2.Analyticalsolutionforthesurfaceposition(left)anditsslope(right).Pa-rametervaluesare=0.1andk=2.33.4NumericalSolutionMethodAlternatively,wewillcomputeanumericalsolutionof(1).Tothatpurpose,wecoverthedomain0,1withcontrolvolumesVj=xj1/2,xj+1/2)ofequalsizex=xj+1/2xj1/2.LetxjbethegridpointinthecentreofVj.Furthermore,weintroducetimelevelstn=nt,withtbeingthetimestep.Letnjdenotethenumericalapproximationof(xj,tn).Afinitevolumenumericalschemefor(1)canbewritteninthegenericformn+1j=njt(xj)Fparenleftbigpnj1/2,pnj+1
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 中國高端室內(nèi)設計方案核心要素
- 2025授權進口協(xié)議合同樣本
- 小刺猬簡筆畫課件
- 低價售賣混凝土合同范例
- 2020年高考歷史總復習基礎復習筆記
- 艾滋病傳染病宣傳教育
- 拯救唐僧美術課件
- 修剪橘子合同范例
- 代理機構商標轉讓合同范例
- 農(nóng)莊物資采購合同范例
- 2025年高壓電工作業(yè)考試國家總局題庫及答案(共280題)
- 藝術機構培訓章程范本
- 湖北荊州市監(jiān)利市暢惠交通投資有限公司招聘筆試沖刺題2024
- 兒童哮喘降階梯治療
- 食品配送行業(yè)安全生產(chǎn)管理制度
- 土力學知到智慧樹章節(jié)測試課后答案2024年秋青島理工大學
- 《成人心肺復蘇術》課件
- 國家秘密載體的管理要求
- 車間照明施工合同范例
- 硫酸安全使用管理及使用制度(4篇)
- 高教版2023年中職教科書《語文》(基礎模塊)下冊教案全冊
評論
0/150
提交評論