




全文預(yù)覽已結(jié)束
下載本文檔
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
ExperimentalanalysisofacompositeautomotivesuspensionarmM.PINFOLDandG.CALVERT(UniversityofWarwick/RoverGroupGaydon,UK)Received11November1992;revised26March1993Inapplicationswhereweightsavingandpartsintegrationcanbeachieved,theRoverGrouphasbeeninvestigatingthedesignandmanufactureofcomponentsfromcompositematerials.Themethodsusedinthedifferentstepsinthedesign-to-manufacturecycleinthehighvolumeautomotiveindustryarerelativelywellknownforasteelcomponent,butarenotsowellestablishedforacompositecomponent.Adesignmethodologyforcompositeshasbeenemerginginwhichaprincipalprocedureisdesignanalysis.Oneofthemostestablishedmethodsofanalysisisthatusingthefiniteelementtechnique,andthisisbeingsupplementedwithexperimentaltestsonprototypesusingphotoelasticanalysisandstresspat-ternanalysisbythermalemission,coupledwithconventionalstraingaugemoni-toring.Littleworkhasbeenundertakentocorrelatetheresultsobtainedfromthesedifferenttestmethodsandtocomparetheresultswithmeasurementsmadeonanactualcomponent.Thispaperpresentssomeoftheworkundertakenconcerningtheanalysisandtestingofacompositeautomotivesuspensionarm.Theresultsobtainedfromthethreedifferentanalysistechniquesarecomparedwithexperi-mentaltestresults,andtheiraccuracyisdiscussed.Keywords:autmotivesuspensionarm;stressanalysis;finiteelementmethod;photoelasticanalysis;SPATE;straingauges;sheetmouldingcompoundSolanddeWildestatethatcompositematerialshavebeenusedincreasinglyasstructuralmaterials.Areasonforthis.,isthatcompositematerialshavehighstrengthtoweightandhighstiffnesstoweightratioswhichcansignificantlyreducetheweightofastructure.Perhapsthemostimportantfeatureofcompositematerialsisthattheirmechanicalp:opertiescanbetailoredtomeetaspecificcriterion.However,Johnsonetal?suggestthatcompositedesign,analysisandfabricationtechnologymustundergomajordevelopmentsandsuccessfuldemonstrationsbeforesignificantstructuralcomponentswillbeincorporatedinproductionautomobilesandtrucks.Compositematerialshavetocompetewithsteelwithintheengineeringenvironment.WithintheautomotiveindustrythisrequiresacertainamountoftechnologytransferfromplacessuchastheAdvancedTechnologyCentreattheUniversityofWarwick,whichworkwithmaterialmanufacturersandautomotiveengineerstoenableunderstandingaboutthesematerialsasanalter-nativetothetraditionalmaterialssuchassteel.Ifcom-positesaretocompetewithtraditionalmaterialsinarealsense,thenautomotivedesignersneedtobefullyaware0010-4361/94/010059-05oftheirstrengthsandlimitationssothattheycanbeoneofperhapsmanyoptionsconsideredattheconceptstageofthedesign.Forthistohappenautomotiveengineersneedtocatchuponthetechniquesofdesigning,testingandmanufacturingcomponentsfromcomposites.Thiswillincludeunderstandinghowvariousmethodssuchasfiniteelement(FE)analysis,stresspatternanalysisbythermalemission(SPATE)andphotoelasticanalysiscanbeappliedtocompositecomponentsintheirdesignanddevelopment.Thusfarlittleworkappearstohavebeenundertakentostudywhethertheresultsobtainedfromthesedifferentanalysismethodscorrelatewithoneanotherorwithactualexperimentalresultsobtainedfromtestingarealcomponent.Inordertostudytheapplicationandcorre-lationofthedifferentanalysismethodstocompositematerials,acompositecomponent-anautomotivelowersuspensionarm-wasmanufactured.Thiscom-positecomponentwasanalysedbythethreemethodsdescribedaboveandalsotestedunderrealisticloadingconditions,withexperimentalresultsbeingobtainedfromstraingauges.1994Butterworth-HeinemannktdCOMPOSITES.VOLUME25.NUMBER1.199459,BallJointHousingFig.1ThecompositesuspensionarmDESIGNTheexistingsteellowersuspensionarmconsistsofninepiecesweldedtogetherwhilstthere-designedcompositecomponent-whichcanbeseeninFig.1-isasinglemouldedpart.Thematerialusedtomanufacturethesuspensionarmwasasheetmouldingcompound(SMC),comprisingapolyesterresinbondingagentwitha30%contentofrandomlyarrangedshortglassfibresandcal-ciumcarbonatefiIler.Theweightofthesteelsuspensionarmis2.53kgwhilstthere-designedSMCsuspensionarmcompletewithbushesandballjointweighs1.5kg.Thematerialpropertiesusedforthecompositesuspensionarmintheseanalyses,obtainedfromtestscarriedoutatRoversmaterialslaboratory,wereYoungsmodulus=10.5GPa,Poissonsratio=0.26anddensity=1.8x10-6kgmm-3.EXPERIMENTALTECHNIQUESPriortoundertakingexperimentalanalysisofanactualengineeringcomponent,someinitialvalidationworkwasrequiredtogainconfidenceinthetechniqueswhenappliedtosheetmouldingcompound.Therefore,fiatplates,beamsanddiscsconstructedfromSMCwereana-lysedundervariousloadingconditionsbeforeprogress-ingontothedesignedcomponent.Mostvalidationtestswerecarriedoutusingstrain-gaugedspecimenstocorrelatewiththefiniteelementanalysisresults.AlthoughitisrecognizedthatSMCisnotanisotropiematerialduetosomefibreorientationduringprocessing,forthepurposesofanalysisthemater-ialwasassumedtobeisotropic.Also,whentheactualSMCsuspensionarmwascutupandexamined,signifi-cantfibredistributionwasobservedintheribs.Itisfeltthatthecorrelationbetweentheexperimentalandanaly-sisresultsvalidatedthisassumptioninthecaseofthisparticularcomponent.StraingaugetestsBeforeundertakingtheexperimentaltestwork,thecom-positecomponentwasmountedviaitsrubbermountingbushesontoarelativelyinfinitelystiffstructure.Itisverydifficulttocoveralloftheloadingconditionswhencon-ductingexperimentaltestsandthusaworst-casescenarioisusuallyassumed.Theworst-caseloadingconditiononsuspensioncomponentsisknownaspot-holebrake.Thisattemptstosimulatethevehiclefallingintoadeeppot-holeat30mphwiththebrakesfullyappliedatthepointofimpact.Theresultantfore/aftandlateralloadsarethencalculatedbasedontheweightandvelocityofthevehicle.Duetothelimitationsofthetestrigthefullpot-holeloadscouldnotbeappliedtothecomponent,andthusreducedloadswiththesameresultantdirectionasthepot-holeloadswereappliedandtheresultsscaled.Theloadsappliedforthefullpot-holebrakecasewere24.2kNinXand8.2kNinY,andforthereducedloadcasewere5.9kNinXand2.02kNinY-seeFig.1.Thestraingaugesusedconsistedofsixthree-axisrosettegaugesand13single-gridgauges,with2.5mmgridlengths,chosentofitintotheradiiofthecomponentinanattempttomeasurethemaximumstrain,Gaugesweresituatedneartheballjointhousing,wheretheloadswereapplied,andaroundtheradiiofthebodymountingbushes,wherethecomponentwouldbemountedtothecarsubframe.Additionalstraingaugesweresituatedonsomeofthestrengtheningribsandclosetotheanti-rollbarmountingposition.SPATEanalysisStresspatternanalysisbythermalemission(SPATE)canbeusedtodeterminethesurfacestressesofcomponentsbystudyingthesmallchangesintemperatureduetocyclicloadingconditions.SPATEequipmentcomprisesadetectorunitwithscanninghead,ananaloguesignalprocessingunitandadigitalelectronicdataunit.Thesystemworksbydetectingtheminutetemperaturechangeswhichoccurwhenastructureiscyclicallyloaded.Theinfra-reddetectorscansthestructureandcorrelatesthemeasuredoutputwithareferencesignalfromtheloadingsystem.Anelectronicdataprocessingsystemcorrelatesthedetectedstress-inducedthermalfluctuationswiththeloadingreferencesignal.Acolourcontourmapofthesumoftheprincipalstresses(cr+4)isthenplotted,togetherwithabarchartgivingactualvalues.Thiscorrelationofsignalseffectivelyeliminatesallsignalfrequenciesotherthanthosecausedbytheloadingsystem,i.e.,allambienttemperaturefluctua-tions.TheSPATEsystemhasatemperatureresolutionof0.001C,andaspatialresolutionoflessthanImm.ThistypeofanalysishasbeenshownbyanumberofauthorsTMtoalsobeapplicabletonon-isotropicmater-ialssuchascomposites,andthesmallerrors(6%)demonstratedfromsuchstudieswhencomparedwiththeoreticalorFEresultsarefelttobeduetoinaccuraciesinthematerialdataused4.Itisapparentfromthestudiesundertakenthattheuseofthermoelasticstressanalysistoevaluatestressesandstrainsinanisotropiccompositematerialsismorecomplexthanforisotropicmaterials.However,ithasbeenshownthatthetechniquecanprovidevaluablequalitativeinformationonstressdistri-bution,effectsofsurfacedefectsandcrackgrowthpredictions.Ithasalsobeendemonstratedthat,givenaccuratedetailsofmaterialpropertiesincludingexpan-sioncoefficients,quantitativeresultscanbeobtaineddependinguponthedegreeofanisotropyofthematerial.PriortoundertakingafullSPATEanalysisofthesuspen-sionarmitwasnecessarytodetermineacalibrationfactorforthematerialused.Thiscanbeachievedintwoways,eitherbyloadingadiscofthematerialincompres-sionandcomparingtheSPATEoutputwiththetheoreti-60COMPOSITES.NUMBER1.1994calsolution,orbystraingaugingdirectlyontothecomponentinanareaofevenstressdistribution,therebyobtainingadirectcomparisonwiththeSPATEoutput.Bothmethodswereusedinthiscase,butdirectcalib-rationwithstraingaugescanovercomealotoftheproblems,thusallowingsignificantinformationtobeobtainedfromtheSPATEoutput.PhotoelasticanalysisThemajorityofphotoelasticworkinvestigatingthemac-romechanicalbehaviourofcompositematerialshasbeenundertakenusingphotoelasticcoatingtechniques.Thisisdonetoavoidthecomplexitiesofconstructingaphoto-elasticmodelwithanisotropicpropertiesandthuscon-structingacompositeliketheoriginalwhichwouldloseitstransparencyandcouldnotbeanalysed.However,forcomplexfibrelay-upsthiswouldbetheonlymethodofconductingphotoelasticanalysis,andthussomeresearchhasbeenundertakeninvestigatingtheuseoftheactualcompositesj7-30.Reasonableresultshavebeenobtainedfromsuchanalyses,butwithlimitationsduetotheneces-sityfortransparencywithinthecomposite.However,thecompositecomponentconsideredinthisstudywasmanufacturedfromSMCandthematerialwasassumedtobeisotropic,thussimplifyingthecreationofaphoto-elasticmodel.Athree-dimensionalepoxyresinmodelofthesuspensionarmwasconstructedforthephotoelasticanalysis.Themodelwasthenloadedinarepresentativemanner,withscaled-downloads,andsubjectedtoastressfreezingcycle.Thisinvolvesheatingthemodeluptothemater-ialsglasstransitiontemperature,atwhichpointtheYoungsmoduluschanges,andthemodeldeformsundertheappliedloads.Themodelisthenslowlycooled,avoidinganyuneventemperaturedistributionwhichcouldresultinunwantedthermalstresses.Duringthecoolingcyclethedeformationsandstressesarelockedintothemodel.Whenviewedunderpolarizedlightthethree-dimensionalmodelisajumbleofinterferencefringes.Inordertodeterminebothmagnitudeanddirec-tionoftheprincipalstressesatanypoint,asliceisremovedandobservedunderpolarizedlight.Bycount-ingthefringesthestressesinthemodelcanbecalculatedandconvertedintoactualstressinthecomponent.Thisisdonebymeansofproportionality,betweenthemodelandcomponentmaterials,andtheloadinganddimensio-nalparameters.Thelowersuspensionarmismountedtotherestofthecarviarubbermountingbushes.Investigationswerecarriedoutastothepossibilityofmodellingthesemountingbushes.However,experimentswithsiliconandfoamrubbersshowedthattherequiredscaled-downstiffnessofthebushesduringstressfreezingatelevatedtemperaturescouldnotbemaintained.Thephotoelasticanalysisthusassumedthatthesuspensionarmwassolidlymounted.FINITEELEMENTANALYSISThecompositesuspensionarmwasmodelledusingapproximately1300oftheSTIF45ANSYSsolidele-ments.Thesuspensionarmismountedtothesubframeviarubbermountingbushes;theseweremodelledwithspringelementstorepresentthestiffnessofthebushesandtocreatearealisticloaddistributionthroughoutthecomponent.LoadswereappliedtotheFEmodelviabeamelementsattheballjoint.ThreeloadcaseswereanalysedusingtheANSYSFEsoftware.Thefirstloadcasesimulatedthefullpot-holebrakeloads.Thesecondsimulatedthereducedloadusedinthetestsduetothelimitationsofthetestrig,toenablecomparisonswiththeresultsfromtheexperimentalstraingaugeanalysis.Thesetwoloadcasesusedspringelementstosimulatethestiffnessoftherubbermountingbushes.Thethirdloadcaseagainusedthereducedloadsbutthistimeomittedthespringelements;i.e.,thesuspen-sionarmwasmodelledasbeingsolidlymounted.ThisthirdloadcasewasrequiredtocorrelatewiththeSPATEandphotoelasticanalyses.RESULTSFiniteelementanalysisAnalysisofthesuspensionarmshowedthatthemaxi-mumequivalentstressinthecomponentfortheloadcaseconsideredisveryclosetotheultimatetensilestrengthoftheproposedmaterialforthepot-holeloadingcondition,whichistheworstloadingcondition.Thismeansthatthecomponentmayneedtobemanufacturedfromadiffer-entmaterial,orthatothermaterialsneedtobeposit-ionedinareasofhighstresstostrengthenthecomponentlocally.Duetoconstraintsupontheamountofcomputerdiscspaceavailable,thenumberofelementsusedwithintheFEmodelwasrelativelylowandthusthesizeoftheelementswithintheareaoftheradiiaroundthebodymountingbusheswastoolargetodetectanylargestressconcentrations.Also,thetypesofelementusedaroundtheseareas,duetothegeometryofthecomponent,wereamixtureofbrick,wedgeandtetrahedral.Thelattershapetendstobetoostifftogivegoodresultsandisnotrecommended.Ifmoredetailedresultswererequiredintheseareas,thentheseradiiwouldhavetobemodelledingreaterdetailwithmoreandsmallerelementsintheareasofhighstressgradient.PhotoelasticanalysisTheanalysisofthephotoelasticmodelofthesuspensionarmwasundertakenassumingthatthedirectionsofthemaximumprincipalstresseslayinahorizontalplanethroughthemodelinthedirectionofthefore/aftload.Whilstthisisnotstrictlytrueinpracticeduetolocalgeometryeffectsincertainareas,theassumptiongavesufficientlyaccurateresults.Ifobviousdiscrepancieswerefoundinparticularareasthenitwaspossibletotakeslicesfromdifferentplanes.Maximumstresseswereseentooccurinthevicinityoftheballjointhousingandthebodymounts.Duetotheabilityofphotoelasticanalysistopinpointverysmallareasofhighstress,themaximumstressvaluesgivenbyphotoelasticitytendedtobehigherthanthestraingaugeresults.Forexample,maximumstresslevelsintheinternalradiusoftheleadingbodymountwerefoundtobe43MPacomparedwithaSPATEvalueof26MPa.Thisdifferencecanbeexplainedbyexamin-ingtheslicetakenthroughthephotoelasticmodelwhichshowsthatthemaximumstressonlyoccursatapositionCOMPOSITES.NUMBER1.199461Table1.Stressresults(MPa)forfullloadcon-ditionsPositionStraingaugesFEPhotoelasticBalljointhousing176165176spanning3mmandthatthestressvalueseithersideofthemaximumarearound25MPa.SPATEanalysisTheinitialSPATEscanshowedlargebandsofstressrunningacrossthemountingareasandsomeconfusionastowhethertheseareaswereintensionorcompression.Theproblemwasidentifiedasexcessivemovementinthesuspensionarmbodymountingpositionsduetodistor-tionoftherubberbushesasexperiencedinthestraingaugetests.SPATEisequippedwithamotioncompen-satordeviceifrequired,whichdeflectsthescanningmirrorsinsidethedetectorintimewiththeoscillationsofthetest-piece,therebyeliminatingthemovement.How-ever,inthisparticularcase,thegeometryanddirectionofmovementcouldnotbeeliminatedovertheentireareaatthesametime,andthusitwasnecessarytoremovetherubberbushesandtoreplacethemwithaluminiumones.TheSPATEanalysiswasrepeatedwiththesolidbushesandshowedareasofhightensilestress(26MPa)alongtheleadingedgeandaroundtheinnerradiusoftheleadingbodymountingposition.Unfortunately,noSPATEanalysiscouldbeundertakenattheballjointendofthecomponentasitwasobscuredbythelargeloadingadaptorrequiredtofitthehydraulicactuatorsupplyingthecyclicloading.COMPARISONOFRESULTSItshouldbeclarifiedthatthestressvaluesquotedinthetablesfromthestraingaugeresultswerecalculatedfromtherosettegaugestogiveavalueofmaximumprincipalstress.Thephotoelasticanalysisalsogivesmaximumprincipalstressesunlessthevaluesaretakeninboardofafreeedgeinwhichcasetheyaredifferencesinprincipalstresses(o.-o-,).SPATEanalysisgivesanoutputintheformofthesummationoftheprincipalstresses(or.+a2)whereastheFEoutputcanbeinanyformrequired(inthiscaseyonMises).Duetothegeometryofthecompo-nentandthewayinwhichtheloadswereapplied,thevaluesofor2andcr3werealwayssmall,andthusdirectcomparisonscouldbemadebetweenthedifferentanaly-sismethodswithoutfurtherconversion.Tablelcomparestheresultsobtainedforthemaximumpot-holeloadconditions.Themaximumstressvaluesalloccurattheballjointareaandcorrelateverywell.Theseresultantstressesforthestraingaugesandphotoelasti-citywerecalculatedfromtheresultsobtainedforthereducedload.Themodelstresswasmultipliedbyaload-ingfactorastheratiobetweenthefore/aftandlateralloadingremainedconstantandinthesameproportionasthefullpot-holebrakeloadappliedtothesuspensionarlTI.TheresultsoftheanalysesundertakenwithreducedTable2.Stressresults(MPa)forredTJcedloadswithmountingbushesPositionStraingaugesFEInnerradiusofbody2520mountBalljointhousing4940Table3.Stressresults
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 西安郵電大學(xué)《雅思英語閱讀與寫作(上)》2023-2024學(xué)年第二學(xué)期期末試卷
- 神木職業(yè)技術(shù)學(xué)院《雕塑基礎(chǔ)》2023-2024學(xué)年第二學(xué)期期末試卷
- 江陽城建職業(yè)學(xué)院《數(shù)字設(shè)備與裝備》2023-2024學(xué)年第一學(xué)期期末試卷
- 山東省萊州市一中2024-2025學(xué)年高三數(shù)學(xué)試題第四次聯(lián)考試題含解析
- 遼寧傳媒學(xué)院《地質(zhì)工程》2023-2024學(xué)年第二學(xué)期期末試卷
- 泉州幼兒師范高等??茖W(xué)?!督鹑诠こ獭?023-2024學(xué)年第二學(xué)期期末試卷
- 神木職業(yè)技術(shù)學(xué)院《生態(tài)環(huán)境保護基礎(chǔ)》2023-2024學(xué)年第二學(xué)期期末試卷
- 因狗咬傷賠償協(xié)議書模板.二零二五年
- 二零二五版成都存量房屋買賣合同書
- 二零二五版論行政合同書特權(quán)的法律規(guī)制
- 駐廠協(xié)議書模板
- 醫(yī)保知識及政策培訓(xùn)課件
- 【MOOC】大學(xué)體育(二)-華中科技大學(xué) 中國大學(xué)慕課MOOC答案
- 機油化學(xué)品安全技術(shù)(MSDS)說明書
- 《湖南省醫(yī)療保險“雙通道”管理藥品使用申請表》
- 是誰殺死了周日
- 體育概論-第三版-楊文軒-陳琦-全國普通高等學(xué)校體育專業(yè)類基礎(chǔ)課程教材-第五章-體育手段
- (高清版)外墻外保溫工程技術(shù)標準JGJ144-2019
- 奧貝兒氧化溝設(shè)計計算書
- 湖北省建設(shè)監(jiān)理統(tǒng)一用表
- 沖床常見故障及排除方法
評論
0/150
提交評論