外文翻譯--平衡梁的剪力和彎矩.doc_第1頁
外文翻譯--平衡梁的剪力和彎矩.doc_第2頁
外文翻譯--平衡梁的剪力和彎矩.doc_第3頁
外文翻譯--平衡梁的剪力和彎矩.doc_第4頁
外文翻譯--平衡梁的剪力和彎矩.doc_第5頁
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

ShearForceandBendingMomentinBeamsLetusnowconsider,asanexample,acantileverbeamacteduponbyaninclinedloadPatitsfreeendFig.1.5(a).Ifwecutthroughthebeamatacrosssectionmnandisolatetheleft-handpartofthebeamasfreebodyFig.1.5(b),weseethattheactionoftheremovedpartofthebeam(thatis,theright-handpart)upontheleft-handpartmustastoholdtheleft-handinequilibrium.Thedistributionofstressesoverthecrosssectionmnisnotknownatthisstageinourstudy,butweedoknowthattheresultantofthesestressesmustbesuchastoequilibratetheloadP.ItisconvenienttoresolvetotheresultantintoanaxialforceNactingnormaltothecrosssectionandpassingthroughthecentriodofthecrosssection,ashearforceVactingparalleltothecrosssection,andabendingmomentMactingintheplaneofthebeam.Theaxialforce,shearforce,andbendingmomentactingatacrosssectionofabeamareknownasstressresultants.Forastaticallydeterminatebeam,thestressresultantscanbedeterminedfromequationsofequilibrium.Thus,forthecantileverbeampicturedinFig.1.5,wemaywriterthreeequationsofstacticsforthefree-bodydiagramshowninthesecondpartofthefigure.Fromsummationsofforcesinthehorizontalandverticaldirectionswefind,respectively,N=PcosV=Psinand,fromasummationofmomentsaboutanaxisthroughthecentroidofcrosssectionmn,weobtainM=Pxsinwherexisthedistancefromthefreeendtosectionmn.Thus,throughtheuseofafree-bodydiagramandequationsofstaticequilibrium,weareabletocalculatethestressresultantswithoutdifficulty.ThestressinthebeamduetotheaxialforceNactingalonehavebeendiscussedinthetextofUnit.2;NowwewillseehowtoobtainthestressesassociatedwithbendingmomentMandtheshearforceV.ThestressresultantsN,VandMwillbeassumedtobepositivewhenthetheyactinthedirectionsshowninFig.1.5(b).Thissignconventionisonlyuseful,however,whenwearediscussingtheequilibriumoftheleft-handpartofthebeamisconsidered,wewillfindthatthestressresultantshavethesamemagnitudesbutoppositedirectionsseeFig.1.5(c).Therefore,wemustrecognizethatthealgebraicsignofastressresultantdoesnotdependuponitsdirectioninspace,suchastotheleftortotheright,butratheritdependsuponitsdirectionwithrespecttothematerialagainst,whichitacts.Toillustratethisfact,thesignconventionsforN,VandMarerepeatedinFig.1.6,wherethestressresultantsareshownactingonanelementofthebeam.Weseethatapositiveaxialforceisdirectedawayfromthesurfaceuponwhichisacts(tension),apositiveshearforceactsclockwiseaboutthesurfaceuponwhichitacts,andapositivebendingmomentisonethatcompressestheupperpartofthebeam.ExampleAsimplebeamABcarriestwoloads,aconcentratedforcePandacoupleMo,actingasshowninFig.1.7(a).Findtheshearforceandbendingmomentinthebeamatcrosssectionslocatedasfollows:(a)asmalldistancetotheleftofthemiddleofthebeamand(b)asmalldistancetotherightofthemiddleofthebeam.SolutionThefirststepintheanalysisofthisbeamistofindthereactionsRAandRB.TakingmomentsaboutendsAandBgivestwoequationsofequilibrium,fromwhichwefindRA=3P/4Mo/LRB=P/4+mo/LNext,thebeamiscutatacrosssectionjusttotheleftofthemiddle,andafree-bodydiagramisdrawnofeitherhalfofthebeam.Inthisexamplewechoosetheleft-handhalfofthebean,andthecorrespondingdiagramisshowninFig.1.7(b).TheforcepandthereactionRAappearinthisdiagram,asalsodotheunknownshearforceVandbendingmomentM,bothofwhichareshownintheirpositivedirections.ThecoupleModoesnotappearinthefigurebecausethebeamiscuttotheleftofthepointwhereMoisapplied.AsummationofforcesintheverticaldirectiongivesV=RP=-P/4-M0/LWhichshownthattheshearforceisnegative;hence,itactsintheoppositedirectiontothatassumedinFig.1.7(b).TakingmomentsaboutanaxisthroughthecrosssectionwherethebeamiscutFig.1.7(b)givesM=RAL/2-PL/4=PL/8-Mo/2Dependingupontherelativemagnitudesofthetermsinthisequation,weseethatthebendingmomentMmaybeeitherpositiveornegative.Toobtainthestressresultantsatacrosssectionjusttotherightofthemiddle,wecutthebeamatthatsectionandagaindrawanappropriatefree-bodydiagramFig.1.7(c).TheonlydifferencebetweenthisdiagramandtheformeroneisthatthecoupleMonowactsonthepartofthebeamtotheleftofthecutsection.Againsummingforceintheverticaldirection,andalsotakingmomentsaboutanaxisthroughthecutsection,weobtainV=-P/4-Mo/LM=PL/8+Mo/2WeseefromtheseresultsthattheshearforcedoesnotchangewhenthesectionisshiftedfromlefttorightofthecoupleMo,butthebendingmomentincreasesalgebraicallybyanamountequaltoMo.(Selectedfrom:StephenP.TimoshekoandJamesM.Gere,Mechanicsofmaterials,VanNostrandreinholdCompanyLtd.,1978.)平衡梁的剪力和彎矩讓我們來共同探討像圖1.5(a)所示懸梁自由端在傾斜拉力P的作用下的問題。如果將平衡梁在截面mn處截?cái)嗲覍⑵渥筮叢糠肿鳛楦綦x體(圖1.5(b)。可以看出隔離體截面(右邊)的作用國必須和左邊的作用力平衡,截面mn處應(yīng)力的分布情況我們現(xiàn)階段是不知道的,但我們知道這些應(yīng)力的合力必須和拉力P平衡。按常規(guī)可將合力分解成為通過質(zhì)點(diǎn)作用于橫截面的軸向應(yīng)力N、平行于截面的剪切力V和作用在平衡梁平面中的彎矩M。作用在截面上的軸向應(yīng)力、剪切力和彎曲應(yīng)力就是應(yīng)力的合成力。比如靜止的固定梁合成力可由平衡方程得出,如圖1.5所示懸臂梁結(jié)構(gòu)。這樣就可以得到圖形另一部分中的圖示自由部分的三個(gè)平衡方程式。由水平合力和垂直合力的方向,可得:N=Pcos如果將平衡梁在截面mn處截?cái)嗲覍⑵渥筮叢糠肿鳛楦綦x體(圖1.5(b)。可以看出隔離體截面(右邊)的作用國必須和左邊的作用力平衡,截面mn處應(yīng)力的分布情況我們現(xiàn)階段是不知道的,但我們知道這些應(yīng)力的合力必須和拉力P平衡。按常規(guī)可將合力分解成為通過質(zhì)點(diǎn)作用于橫截面的軸向應(yīng)力N、平行于截面的剪切力V和作用在平衡梁平面中的彎矩M。作用在截面上的軸向應(yīng)力、剪切力和彎曲應(yīng)力就是應(yīng)力的合成力。比如靜止的固定梁合成力可由平衡方程得出,如圖1.5所示懸臂梁結(jié)構(gòu)。這樣就可以得到圖形另一部分中的圖示自由部分的三個(gè)平衡方程式。由水平合力和垂直合力的方向,可得:N=PcosV=Psin如果將平衡梁在截面mn處截?cái)嗲覍⑵渥筮叢糠肿鳛楦綦x體(圖1.5(b)??梢钥闯龈綦x體截面(右邊)的作用國必須和左邊的作用力平衡,截面mn處應(yīng)力的分布情況我們現(xiàn)階段是不知道的,但我們知道這些應(yīng)力的合力必須和拉力P平衡。按常規(guī)可將合力分解成為通過質(zhì)點(diǎn)作用于橫截面的軸向應(yīng)力N、平行于截面的剪切力V和作用在平衡梁平面中的彎矩M。作用在截面上的軸向應(yīng)力、剪切力和彎曲應(yīng)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論