




已閱讀5頁(yè),還剩19頁(yè)未讀, 繼續(xù)免費(fèi)閱讀
版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
附錄1翻譯原文及譯文DocNo:P0193-GP-01-1DocName:AnalysisofManufacturingProcessDataUsingQUICKTechnologyTMIssue:1Data:20April,2006Name(Print)SignatureAuthor:D.CliftonReviewer:S.TurnerTableofContents1ExecutiveSummary.41.1Introdution.41.2TechniquesEmployed.41.3SummaryofResults.41.4Observations.52Introdution.62.1OxfordBioSignalsLimited.63ExternalReferences.74Glossary.75DataDescription.75.1Datatypes.75.2PriorExperimentKnowledge.75.3TestDescription.86Pre-processing.96.1RemovalofStart/StopTransients.96.2RemovalofPowerSupplySignal.96.3FrequencyTransformation.97AnalysisI-Visualisation.127.1VisualisationofHigh-DimensionalData.127.2Visualising5-DManufacturingProcessData.錯(cuò)誤!未定義書簽。7.3AutomaticNoveltyDetection.錯(cuò)誤!未定義書簽。7.4ConclusionofAnalysisI-Visualisation.錯(cuò)誤!未定義書簽。8AnalysisII-SignatureAnalysis.錯(cuò)誤!未定義書簽。8.1ConstructingSignatures.錯(cuò)誤!未定義書簽。8.2VisualisingSignatures.錯(cuò)誤!未定義書簽。8.3ConclusionofAnalysisII-SignatureAnalysis.錯(cuò)誤!未定義書簽。9AnalysisIII-TemplateAnalysis.錯(cuò)誤!未定義書簽。9.1ConstructingaTemplateofNormality.錯(cuò)誤!未定義書簽。9.2ResultsofNoveltyDetectionUsingTemplateAnalysis.錯(cuò)誤!未定義書簽。9.3ConclusionofAnalysisIII-TemplateAnalysis.錯(cuò)誤!未定義書簽。10AnalysisIV-None-linearPrediction.錯(cuò)誤!未定義書簽。10.1NeuralNetworksforOn-LinePrediction.錯(cuò)誤!未定義書簽。10.2ResultsofNoveltyDetectionusingNon-linearPrediction.錯(cuò)誤!未定義書簽。10.3ConclusionofAnalysisIV-Non-linearPrediction.錯(cuò)誤!未定義書簽。11OverallConclusion.錯(cuò)誤!未定義書簽。11.1Methodology.錯(cuò)誤!未定義書簽。11.2SummaryofTesults.錯(cuò)誤!未定義書簽。11.3FutureWork.錯(cuò)誤!未定義書簽。12AppendixA-NeuroScaleVisualisations.錯(cuò)誤!未定義書簽。TableofFiguresFigure1-Test90.Fromtoptobottom:Ax,Ay,Az,AE,SPagainsttimet(s)Figure2-PowerspectraforTest19afterremovalof50Hzpowersupplycontribution.Thetopplotshowsa3-D“l(fā)andspace”plotofeachspectrum.Thebottomplotshowsa“contour”plotofthesameinformation,withincreasingsignalpowershownasincreasingcolourfromblacktoredFigure3-PowerspectraforTest19afterremovalofallspectralcomponentsbeneathpowerthresholdFigure4-Azagainsttime(inseconds)forTest19,beforeremovaloflow-powerfrequencycomponentsFigure5-Azagainsttime(inseconds)forTest19,afterremovaloflow-powerfrequencycomponentsFigure6-SPforanexampletest,showingthreeautomatically-detecrminedstates:S1-drillingin(showningreen);S2-drill-bitbreak-throughandremoval(showninred);S3-retraction(showninblue)Figure7-Examplesignatureofvariableyplottedagainstoperating-pointFigure8-Powerspectrafortest51,frequency(Hz)onthex-axisbetween0fs/2Figure9-AveragesignificantfrequencyfuFigure10-VisualisationofAEsignaturesforalltestsFigure11-VisualisationofAxbroadbandsignaturesforalltestsFigure12-VisualisationofAxaverage-frequencysignaturesforalltestsFigure13-NoveltydetectionusingatemplatesignatureFigure14-1ExecutiveSummary1.1IntroductionThepurposeofthisinvestigationconductedbyOxfordBioSignalswastoexamineanddeterminethesuitabilityofitstechniquesinanalyzingdatafromanexamplemanufacturingprocess.ThisreporthasbeensubmittedtoRolls-RoycefortheexpressedofassessingOxfordBioSignalstechniqueswithrespecttomonitoringtheexampleprocess.TheanalysisconductedbyOxfordBioSignals(OBS)waslimitedtoafixedtimescale,afixedsetofchallengedataforasingleprocess(asprovidedbyRolls-RoyceandAachenuniversityofTechnology),withnopriordomainknowledge,norinformationofsystemfailure.1.2TechniquesEmployedOBSusedanumberofanalysistechniquesgiventhelimitedtimescales:I-Visualisation,andClusterAnalysisThispowerfulmethodallowedtheevolutionofthesystemstate(fusingallavailabledatatypes)tobevisualisedthroughouttheseriesoftests.Thisshowedseveraldistinctmodesofoperationduringtheseries,highlightingmajoreventsobservedwithinthedata,latercorrelatedwithactualchangestothesystemsoperationbydomainexperts.Clusteranalysisautomaticallydetectswhichoftheseeventsmaybeconsideredtobe“abnormal”,withrespecttopreviouslyobservedsystembehavior.II-Signaturerepresentseachtestasasinglepointonaplot,allowingchangesbetweenteststobeeasilyidentified.Abnormaltestsareshownasoutlyingpoints,withnormaltestsformingacluster.Modelingthenormalbehaviorofseveralfeaturesselectedfromtheprovideddata,thismethodshowedthatadvancewarningofsystemfailurecouldbeautomaticallydetectedusingthesefeatures,aswellashighlightingsignificanteventswithinthelifeofthesystem.III-TemplateAnalysisThismethodallowsinstantaneoussample-bysamplenoveltydetection,suitableforon-lineimplementation.UsingacomplementaryapproachtoSignatureAnalysis,thismethodalsomodelsnormalsystembehavior.Resultsconfirmedtheobservationmadeusingpreviousmethods.IV-NeuralnetworkPredictorSimilarlyusefulforon-lineanalysis,thismethodusesanautomatedpredictorofsystembehaviour(aneuralnetworkpredictor),inwhichpreviouslyidentified
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 肉牛合伙養(yǎng)殖協(xié)議書
- 資源共享管理協(xié)議書
- 設(shè)施管理外包協(xié)議書
- 襄陽(yáng)跨省勞務(wù)協(xié)議書
- 聘任綠化專家協(xié)議書
- 管廊監(jiān)控合同協(xié)議書
- 購(gòu)買書籍合同協(xié)議書
- 終止政府采購(gòu)協(xié)議書
- 2024年中國(guó)醫(yī)科大學(xué)輔導(dǎo)員考試真題
- 審計(jì)報(bào)告的撰寫規(guī)范試題及答案
- JCT 871-2023 鍍銀玻璃鏡 (正式版)
- 【“三全育人”在幼兒德育教育中的實(shí)踐探究3700字(論文)】
- 法醫(yī)精神病題庫(kù)
- 中國(guó)古代的聲學(xué)成就
- MOOC 英國(guó)小說(shuō)-南京大學(xué) 中國(guó)大學(xué)慕課答案
- 房建監(jiān)理投標(biāo)文件技術(shù)部分
- 新廠規(guī)劃方案
- 門窗知識(shí)講解課件
- 室速的護(hù)理措施
- 鎮(zhèn)痛藥物在糖尿病足疼痛治療中的效果評(píng)估
- 北京南站流線分析報(bào)告
評(píng)論
0/150
提交評(píng)論