平行四邊形18.1_第1頁
平行四邊形18.1_第2頁
平行四邊形18.1_第3頁
全文預覽已結束

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

課題:平行四邊形授課教師:北城中學 曹婭燁教材:人民教育出版社義務教育教科書數(shù)學八年級下冊(2013版)【教學目標】1理解平行四邊形的定義2經(jīng)歷平行四邊形性質(zhì)的推導及應用3能利用平行四邊形的定義和性質(zhì)進行簡單的推理和計算【教學重點】平行四邊形定義和性質(zhì)的推導及應用【教學難點】平行四邊形性質(zhì)的推導及應用【教學方法與教學手段】引導發(fā)現(xiàn)法,小組合作學習,多媒體輔助教學【教學過程】活動一 觀察抽象,形成概念問題1 我們在現(xiàn)實生活中常常看到這樣的圖形,圖片觀察得到平行四邊形問題2 研究幾何圖形的一般思路是?本章我們研究平行四邊形的定義,性質(zhì)和判定引出節(jié)標題“平行四邊形的性質(zhì)” 問題3 你知道什么樣的四邊形是平行四邊形嗎?給出定義,寫出定義的雙重符號語言說出讀法,記法活動二 概括證明 探究性質(zhì)問題4 對于平行四邊形,它有哪些基本元素呢? 你猜想邊,角之間有什么數(shù)量關系呢?猜想:平行四邊形的對邊相等,對角相等思考:怎么證明這個猜想?已知: 四邊形ABCD是平行四邊形,求證:AB=CD,BC=DA; B=D,A=C先獨立思考,再討論交流小結:1剛才我們是怎么添輔助線的?2通過添加輔助線,把平行四邊形問題轉(zhuǎn)化成了什么問題?3這里我們運用了什么數(shù)學思想?問題:不添加輔助線,你能否證明平行四邊形的對角相等? 平行四邊形的鄰角有什么關系?活動三 應用知識,解決問題問題1如圖,在ABCD 中,B=40,則A=_ , C=_ , D=_變式 如圖,在ABCD 中,A:B=5:4,求ABCD 四個角A=_ , B=_ , C=_ , D=_ 根據(jù)角的題目編平行四邊形的邊的問題問題2 如圖,直線a與b平行,AB,CD是a與b之間的任意兩條平行線段 試問:AB與CD是否相等?為什么?變式如圖,直線ab,AD,BC 為直線a,b間的任意兩垂直于直線a的線段,AD,BC 相等嗎?為什么?若EFa,那么EF 與AD,BC 相等嗎?問題3 如圖,在ABCD 中,已知DEBF你可以得到哪些線段相等呢?活動四 歸納小結(1)本節(jié)課我們學習了哪些知識?(2)通過本節(jié)的學習和過去三角形的學習經(jīng)歷,你認為對一個幾何圖形的研究通常是怎樣進行的?活動五 布置作業(yè)必做:書本P43 1,2題 P49 1,2,3,8題選做:書本P49 14題【教學設計說明】本節(jié)課的重要內(nèi)容是平行四邊形的定義和性質(zhì)的推導及應用平行四邊形是基本的幾何圖形之一,它不僅具有豐富的幾何性質(zhì),而且在生產(chǎn)和生活中具有廣泛的應用平行四邊形的學習綜合了平行線與三角形全等的相關知識突出了演繹推理,訓練學生的思維本節(jié)課對平行四邊形的性質(zhì)探究要經(jīng)歷,觀察,猜想,驗證等過程主要研究邊,角的性質(zhì)在研究過程中還經(jīng)歷了將平行四邊形問題轉(zhuǎn)換成三角形的問題讓學生再次體會轉(zhuǎn)化思想還讓學生經(jīng)歷了研究幾何圖形的一般思路與方法在小學階段學生已經(jīng)對平行四邊形的有

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論