


全文預(yù)覽已結(jié)束
下載本文檔
版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
公式法教學(xué)設(shè)計(jì) 教學(xué)內(nèi)容 1一元二次方程求根公式的推導(dǎo)過(guò)程; 2公式法的概念; 3利用公式法解一元二次方程 教學(xué)目標(biāo) 理解一元二次方程求根公式的推導(dǎo)過(guò)程,了解公式法的概念,會(huì)熟練應(yīng)用公式法解一元二次方程 復(fù)習(xí)具體數(shù)字的一元二次方程配方法的解題過(guò)程,引入ax2+bx+c=0(a0)的求根公式的推導(dǎo)公式,并應(yīng)用公式法解一元二次方程 重難點(diǎn)關(guān)鍵 1重點(diǎn):求根公式的推導(dǎo)和公式法的應(yīng)用 2難點(diǎn)與關(guān)鍵:一元二次方程求根公式法的推導(dǎo) 教學(xué)過(guò)程一、 復(fù)習(xí)引入1 前面我們學(xué)習(xí)過(guò)解一元二次方程的“直接開平方法”,比如,方程(1)x2=4 (2)(x-2) 2=7提問(wèn)1 這種解法的(理論)依據(jù)是什么?提問(wèn)2 這種解法的局限性是什么?(只對(duì)那種“平方式等于非負(fù)數(shù)”的特殊二次方程有效,不能實(shí)施于一般形式的二次方程。) 2面對(duì)這種局限性,怎么辦?(使用配方法,把一般形式的二次方程配方成能夠“直接開平方”的形式。) (學(xué)生活動(dòng))用配方法解方程 2x2+3=7x (老師點(diǎn)評(píng))略 總結(jié)用配方法解一元二次方程的步驟(學(xué)生總結(jié),老師點(diǎn)評(píng))(1)現(xiàn)將已知方程化為一般形式;(2)化二次項(xiàng)系數(shù)為1;(3)常數(shù)項(xiàng)移到右邊;(4)方程兩邊都加上一次項(xiàng)系數(shù)的一半的平方,使左邊配成一個(gè)完全平方式;(5)變形為(x+p)2=q的形式,如果q0,方程的根是x=-pq;如果q0,方程無(wú)實(shí)根二、探索新知用配方法解方程 (1) ax27x+3 =0 (2)a x2+bx+3=0 (3)如果這個(gè)一元二次方程是一般形式ax2+bx+c=0(a0),你能否用上面配方法的步驟求出它們的兩根,請(qǐng)同學(xué)獨(dú)立完成下面這個(gè)問(wèn)題 問(wèn)題:已知ax2+bx+c=0(a0),試推導(dǎo)它的兩個(gè)根x1=,x2=(這個(gè)方程一定有解嗎?什么情況下有解?) 分析:因?yàn)榍懊婢唧w數(shù)字已做得很多,我們現(xiàn)在不妨把a(bǔ)、b、c也當(dāng)成一個(gè)具體數(shù)字,根據(jù)上面的解題步驟就可以一直推下去 解:移項(xiàng),得:ax2+bx=-c 二次項(xiàng)系數(shù)化為1,得x2+x=- 配方,得:x2+x+()2=-+()2 即(x+)2= 4a20,4a20, 當(dāng)b2-4ac0時(shí)0 (x+)2=()2 直接開平方,得:x+= 即x= x1=,x2= 由上可知,一元二次方程ax2+bx+c=0(a0)的根由方程的系數(shù)a、b、c而定,因此: (1)解一元二次方程時(shí),可以先將方程化為一般形式ax2+bx+c=0,當(dāng)b2-4ac0時(shí),將a、b、c代入式子x=就得到方程的根(公式所出現(xiàn)的運(yùn)算,恰好包括了所學(xué)過(guò)的六中運(yùn)算,加、減、乘、除、乘方、開方,這體現(xiàn)了公式的統(tǒng)一性與和諧性。) (2)這個(gè)式子叫做一元二次方程的求根公式(3)利用求根公式解一元二次方程的方法叫公式法公式的理解 (4)由求根公式可知,一元二次方程最多有兩個(gè)實(shí)數(shù)根 例1用公式法解下列方程 (1)2x2-x-1=0 (2)x2+1.5=-3x (3) x2-x+ =0 (4)4x2-3x+2=0 分析:用公式法解一元二次方程,首先應(yīng)把它化為一般形式,然后代入公式即可 補(bǔ):(5)(x-2)(3x-5)=0 三、鞏固練習(xí) 教材P42 練習(xí)1(1)、(3)、(5)或(2) 、(4) 、(6) 四、應(yīng)用拓展 例2某數(shù)學(xué)興趣小組對(duì)關(guān)于x的方程(m+1)+(m-2)x-1=0提出了下列問(wèn)題 (1)若使方程為一元二次方程,m是否存在?若存在,求出m并解此方程 (2)若使方程為一元二次方程m是否存在?若存在,請(qǐng)求出 你能解決這個(gè)問(wèn)題嗎? 分析:能(1)要使它為一元二次方程,必須滿足m2+1=2,同時(shí)還要滿足(m+1)0 (2)要使它為一元一次方程,必須滿足:或或 五、歸納小結(jié) 本節(jié)課應(yīng)掌握: (1)求根公式的概念及其推導(dǎo)過(guò)程; (2)公式法的概念; (3)應(yīng)用公式法解一元二次方程的步驟:1)將所給的方程變成一般形式,注意移項(xiàng)要變號(hào),盡量讓a0.2)找出系數(shù)a,b,c,注意各項(xiàng)的系
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 考場(chǎng)應(yīng)變能力提升中級(jí)經(jīng)濟(jì)師試題及答案
- 2025年醫(yī)養(yǎng)結(jié)合養(yǎng)老機(jī)構(gòu)運(yùn)營(yíng)團(tuán)隊(duì)建設(shè)與人才培養(yǎng)策略報(bào)告
- 2025年虛擬現(xiàn)實(shí)教育產(chǎn)品在職業(yè)院校美術(shù)教學(xué)中的應(yīng)用與效果分析
- 行政管理學(xué)有效自學(xué)方法試題及答案
- 中級(jí)經(jīng)濟(jì)師考試試題及答案回顧
- 尾礦綜合利用技術(shù)在生態(tài)環(huán)境修復(fù)中的應(yīng)用案例分析報(bào)告
- 福建xx新建光伏發(fā)電項(xiàng)目實(shí)施方案
- 2025年公共關(guān)系學(xué)考核標(biāo)準(zhǔn)試題及答案
- 2025年電子競(jìng)技賽事商業(yè)贊助策略:深度解析品牌合作模式報(bào)告
- 解析項(xiàng)目管理中的溝通技巧與策略試題及答案
- 湘教版八上地理第一章第一節(jié) 中國(guó)的地形(導(dǎo)學(xué)案)(教師版)
- 2013循證醫(yī)學(xué)-第六章臨床實(shí)踐指南的循證評(píng)價(jià)與應(yīng)用
- 第一節(jié)-物欲型犯罪心理
- 【MOOC】大學(xué)美育-華南理工大學(xué) 中國(guó)大學(xué)慕課MOOC答案
- 國(guó)開(四川)2024年秋《演講與口才》形考任務(wù)1-2答案終結(jié)性考核答案
- 珠海住建局質(zhì)量問(wèn)題防治脫落和開裂防治篇
- 職業(yè)暴露應(yīng)急預(yù)案演練
- 2024年秋江蘇開放大學(xué)文獻(xiàn)檢索與論文寫作參考范文一:行政管理專業(yè)
- 《電力市場(chǎng)概論》 課件 第五章 系統(tǒng)安全與輔助服務(wù)
- 《10000以內(nèi)數(shù)的讀、寫法》(教案)-二年級(jí)下冊(cè)數(shù)學(xué)人教版
- 2024年湖南省高考生物試卷真題(含答案解析)
評(píng)論
0/150
提交評(píng)論