已閱讀5頁(yè),還剩26頁(yè)未讀, 繼續(xù)免費(fèi)閱讀
版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
高中數(shù)學(xué)必修1-必修5知識(shí)點(diǎn)總結(jié)高中數(shù)學(xué) 必修1知識(shí)點(diǎn) 第一章 集合與函數(shù)概念1.1集合【1.1.1】集合的含義與表示 (1)集合的概念 集合中的元素具有確定性、互異性和無(wú)序性.(2)常用數(shù)集及其記法表示自然數(shù)集,或表示正整數(shù)集,表示整數(shù)集,表示有理數(shù)集,表示實(shí)數(shù)集.(3)集合與元素間的關(guān)系對(duì)象與集合的關(guān)系是,或者,兩者必居其一.(4)集合的表示法 自然語(yǔ)言法:用文字?jǐn)⑹龅男问絹?lái)描述集合.列舉法:把集合中的元素一一列舉出來(lái),寫(xiě)在大括號(hào)內(nèi)表示集合.描述法:|具有的性質(zhì),其中為集合的代表元素.圖示法:用數(shù)軸或韋恩圖來(lái)表示集合.(5)集合的分類(lèi)含有有限個(gè)元素的集合叫做有限集.含有無(wú)限個(gè)元素的集合叫做無(wú)限集.不含有任何元素的集合叫做空集().(6)子集、真子集、集合相等(7)已知集合有個(gè)元素,則它有個(gè)子集,它有個(gè)真子集,它有個(gè)非空子集,它有非空真子集.(8)交集、并集、補(bǔ)集【1.1.2】集合間的基本關(guān)系名稱(chēng)記號(hào)意義性質(zhì)示意圖子集(或A中的任一元素都屬于B(1)AA(2)(3)若且,則(4)若且,則或真子集AB(或BA),且B中至少有一元素不屬于A(1)(A為非空子集)(2)若且,則集合相等A中的任一元素都屬于B,B中的任一元素都屬于A(1)AB(2)BA【1.1.3】集合的基本運(yùn)算名稱(chēng)記號(hào)意義性質(zhì)示意圖交集且(1) (2)(3) 并集或(1) (2)(3) 補(bǔ)集1. 2. 【補(bǔ)充知識(shí)】含絕對(duì)值的不等式與一元二次不等式的解法(1)含絕對(duì)值的不等式的解法不等式解集或把看成一個(gè)整體,化成,型不等式來(lái)求解(2)一元二次不等式的解法判別式二次函數(shù)的圖象一元二次方程的根(其中無(wú)實(shí)根的解集或的解集1.2函數(shù)及其表示【1.2.1】函數(shù)的概念(1)函數(shù)的概念設(shè)、是兩個(gè)非空的數(shù)集,如果按照某種對(duì)應(yīng)法則,對(duì)于集合中任何一個(gè)數(shù),在集合中都有唯一確定的數(shù)和它對(duì)應(yīng),那么這樣的對(duì)應(yīng)(包括集合,以及到的對(duì)應(yīng)法則)叫做集合到的一個(gè)函數(shù),記作函數(shù)的三要素:定義域、值域和對(duì)應(yīng)法則只有定義域相同,且對(duì)應(yīng)法則也相同的兩個(gè)函數(shù)才是同一函數(shù)(2)區(qū)間的概念及表示法設(shè)是兩個(gè)實(shí)數(shù),且,滿(mǎn)足的實(shí)數(shù)的集合叫做閉區(qū)間,記做;滿(mǎn)足的實(shí)數(shù)的集合叫做開(kāi)區(qū)間,記做;滿(mǎn)足,或的實(shí)數(shù)的集合叫做半開(kāi)半閉區(qū)間,分別記做,;滿(mǎn)足的實(shí)數(shù)的集合分別記做注意:對(duì)于集合與區(qū)間,前者可以大于或等于,而后者必須(3)求函數(shù)的定義域時(shí),一般遵循以下原則:是整式時(shí),定義域是全體實(shí)數(shù)是分式函數(shù)時(shí),定義域是使分母不為零的一切實(shí)數(shù)是偶次根式時(shí),定義域是使被開(kāi)方式為非負(fù)值時(shí)的實(shí)數(shù)的集合對(duì)數(shù)函數(shù)的真數(shù)大于零,當(dāng)對(duì)數(shù)或指數(shù)函數(shù)的底數(shù)中含變量時(shí),底數(shù)須大于零且不等于1中,零(負(fù))指數(shù)冪的底數(shù)不能為零若是由有限個(gè)基本初等函數(shù)的四則運(yùn)算而合成的函數(shù)時(shí),則其定義域一般是各基本初等函數(shù)的定義域的交集對(duì)于求復(fù)合函數(shù)定義域問(wèn)題,一般步驟是:若已知的定義域?yàn)?,其?fù)合函數(shù)的定義域應(yīng)由不等式解出對(duì)于含字母參數(shù)的函數(shù),求其定義域,根據(jù)問(wèn)題具體情況需對(duì)字母參數(shù)進(jìn)行分類(lèi)討論由實(shí)際問(wèn)題確定的函數(shù),其定義域除使函數(shù)有意義外,還要符合問(wèn)題的實(shí)際意義(4)求函數(shù)的值域或最值求函數(shù)最值的常用方法和求函數(shù)值域的方法基本上是相同的事實(shí)上,如果在函數(shù)的值域中存在一個(gè)最小(大)數(shù),這個(gè)數(shù)就是函數(shù)的最小(大)值因此求函數(shù)的最值與值域,其實(shí)質(zhì)是相同的,只是提問(wèn)的角度不同求函數(shù)值域與最值的常用方法: 觀察法:對(duì)于比較簡(jiǎn)單的函數(shù),我們可以通過(guò)觀察直接得到值域或最值配方法:將函數(shù)解析式化成含有自變量的平方式與常數(shù)的和,然后根據(jù)變量的取值范圍確定函數(shù)的值域或最值判別式法:若函數(shù)可以化成一個(gè)系數(shù)含有的關(guān)于的二次方程,則在時(shí),由于為實(shí)數(shù),故必須有,從而確定函數(shù)的值域或最值不等式法:利用基本不等式確定函數(shù)的值域或最值換元法:通過(guò)變量代換達(dá)到化繁為簡(jiǎn)、化難為易的目的,三角代換可將代數(shù)函數(shù)的最值問(wèn)題轉(zhuǎn)化為三角函數(shù)的最值問(wèn)題反函數(shù)法:利用函數(shù)和它的反函數(shù)的定義域與值域的互逆關(guān)系確定函數(shù)的值域或最值數(shù)形結(jié)合法:利用函數(shù)圖象或幾何方法確定函數(shù)的值域或最值函數(shù)的單調(diào)性法【1.2.2】函數(shù)的表示法(5)函數(shù)的表示方法表示函數(shù)的方法,常用的有解析法、列表法、圖象法三種 解析法:就是用數(shù)學(xué)表達(dá)式表示兩個(gè)變量之間的對(duì)應(yīng)關(guān)系列表法:就是列出表格來(lái)表示兩個(gè)變量之間的對(duì)應(yīng)關(guān)系圖象法:就是用圖象表示兩個(gè)變量之間的對(duì)應(yīng)關(guān)系(6)映射的概念設(shè)、是兩個(gè)集合,如果按照某種對(duì)應(yīng)法則,對(duì)于集合中任何一個(gè)元素,在集合中都有唯一的元素和它對(duì)應(yīng),那么這樣的對(duì)應(yīng)(包括集合,以及到的對(duì)應(yīng)法則)叫做集合到的映射,記作給定一個(gè)集合到集合的映射,且如果元素和元素對(duì)應(yīng),那么我們把元素叫做元素的象,元素叫做元素的原象1.3函數(shù)的基本性質(zhì)【1.3.1】單調(diào)性與最大(?。┲担?)函數(shù)的單調(diào)性定義及判定方法函數(shù)的性 質(zhì)定義圖象判定方法函數(shù)的單調(diào)性如果對(duì)于屬于定義域I內(nèi)某個(gè)區(qū)間上的任意兩個(gè)自變量的值x1、x2,當(dāng)x1 x2時(shí),都有f(x1)f(x2),那么就說(shuō)f(x)在這個(gè)區(qū)間上是增函數(shù)(1)利用定義(2)利用已知函數(shù)的單調(diào)性(3)利用函數(shù)圖象(在某個(gè)區(qū)間圖象上升為增)(4)利用復(fù)合函數(shù)如果對(duì)于屬于定義域I內(nèi)某個(gè)區(qū)間上的任意兩個(gè)自變量的值x1、x2,當(dāng)x1f(x2),那么就說(shuō)f(x)在這個(gè)區(qū)間上是減函數(shù)(1)利用定義(2)利用已知函數(shù)的單調(diào)性(3)利用函數(shù)圖象(在某個(gè)區(qū)間圖象下降為減)(4)利用復(fù)合函數(shù)yxo在公共定義域內(nèi),兩個(gè)增函數(shù)的和是增函數(shù),兩個(gè)減函數(shù)的和是減函數(shù),增函數(shù)減去一個(gè)減函數(shù)為增函數(shù),減函數(shù)減去一個(gè)增函數(shù)為減函數(shù)對(duì)于復(fù)合函數(shù),令,若為增,為增,則為增;若為減,為減,則為增;若為增,為減,則為減;若為減,為增,則為減(2)打“”函數(shù)的圖象與性質(zhì)分別在、上為增函數(shù),分別在、上為減函數(shù)(3)最大(?。┲刀x 一般地,設(shè)函數(shù)的定義域?yàn)?,如果存在?shí)數(shù)滿(mǎn)足:(1)對(duì)于任意的,都有; (2)存在,使得那么,我們稱(chēng)是函數(shù) 的最大值,記作一般地,設(shè)函數(shù)的定義域?yàn)?,如果存在?shí)數(shù)滿(mǎn)足:(1)對(duì)于任意的,都有;(2)存在,使得那么,我們稱(chēng)是函數(shù)的最小值,記作【1.3.2】奇偶性(4)函數(shù)的奇偶性定義及判定方法函數(shù)的性 質(zhì)定義圖象判定方法函數(shù)的奇偶性如果對(duì)于函數(shù)f(x)定義域內(nèi)任意一個(gè)x,都有f(x)=f(x),那么函數(shù)f(x)叫做奇函數(shù)(1)利用定義(要先判斷定義域是否關(guān)于原點(diǎn)對(duì)稱(chēng))(2)利用圖象(圖象關(guān)于原點(diǎn)對(duì)稱(chēng))如果對(duì)于函數(shù)f(x)定義域內(nèi)任意一個(gè)x,都有f(x)=f(x),那么函數(shù)f(x)叫做偶函數(shù)(1)利用定義(要先判斷定義域是否關(guān)于原點(diǎn)對(duì)稱(chēng))(2)利用圖象(圖象關(guān)于y軸對(duì)稱(chēng))若函數(shù)為奇函數(shù),且在處有定義,則奇函數(shù)在軸兩側(cè)相對(duì)稱(chēng)的區(qū)間增減性相同,偶函數(shù)在軸兩側(cè)相對(duì)稱(chēng)的區(qū)間增減性相反在公共定義域內(nèi),兩個(gè)偶函數(shù)(或奇函數(shù))的和(或差)仍是偶函數(shù)(或奇函數(shù)),兩個(gè)偶函數(shù)(或奇函數(shù))的積(或商)是偶函數(shù),一個(gè)偶函數(shù)與一個(gè)奇函數(shù)的積(或商)是奇函數(shù)補(bǔ)充知識(shí)函數(shù)的圖象(1)作圖利用描點(diǎn)法作圖:確定函數(shù)的定義域; 化解函數(shù)解析式;討論函數(shù)的性質(zhì)(奇偶性、單調(diào)性); 畫(huà)出函數(shù)的圖象利用基本函數(shù)圖象的變換作圖:要準(zhǔn)確記憶一次函數(shù)、二次函數(shù)、反比例函數(shù)、指數(shù)函數(shù)、對(duì)數(shù)函數(shù)、冪函數(shù)、三角函數(shù)等各種基本初等函數(shù)的圖象平移變換伸縮變換 對(duì)稱(chēng)變換 (2)識(shí)圖對(duì)于給定函數(shù)的圖象,要能從圖象的左右、上下分別范圍、變化趨勢(shì)、對(duì)稱(chēng)性等方面研究函數(shù)的定義域、值域、單調(diào)性、奇偶性,注意圖象與函數(shù)解析式中參數(shù)的關(guān)系(3)用圖 函數(shù)圖象形象地顯示了函數(shù)的性質(zhì),為研究數(shù)量關(guān)系問(wèn)題提供了“形”的直觀性,它是探求解題途徑,獲得問(wèn)題結(jié)果的重要工具要重視數(shù)形結(jié)合解題的思想方法第二章 基本初等函數(shù)()2.1指數(shù)函數(shù)【2.1.1】指數(shù)與指數(shù)冪的運(yùn)算(1)根式的概念如果,且,那么叫做的次方根當(dāng)是奇數(shù)時(shí),的次方根用符號(hào)表示;當(dāng)是偶數(shù)時(shí),正數(shù)的正的次方根用符號(hào)表示,負(fù)的次方根用符號(hào)表示;0的次方根是0;負(fù)數(shù)沒(méi)有次方根式子叫做根式,這里叫做根指數(shù),叫做被開(kāi)方數(shù)當(dāng)為奇數(shù)時(shí),為任意實(shí)數(shù);當(dāng)為偶數(shù)時(shí),根式的性質(zhì):;當(dāng)為奇數(shù)時(shí),;當(dāng)為偶數(shù)時(shí), (2)分?jǐn)?shù)指數(shù)冪的概念正數(shù)的正分?jǐn)?shù)指數(shù)冪的意義是:且0的正分?jǐn)?shù)指數(shù)冪等于0正數(shù)的負(fù)分?jǐn)?shù)指數(shù)冪的意義是:且0的負(fù)分?jǐn)?shù)指數(shù)冪沒(méi)有意義 注意口訣:底數(shù)取倒數(shù),指數(shù)取相反數(shù)(3)分?jǐn)?shù)指數(shù)冪的運(yùn)算性質(zhì) (4)指數(shù)函數(shù)【2.1.2】指數(shù)函數(shù)及其性質(zhì)函數(shù)名稱(chēng)指數(shù)函數(shù)定義0101函數(shù)且叫做指數(shù)函數(shù)圖象定義域值域過(guò)定點(diǎn)圖象過(guò)定點(diǎn),即當(dāng)時(shí),奇偶性非奇非偶單調(diào)性在上是增函數(shù)在上是減函數(shù)函數(shù)值的變化情況變化對(duì)圖象的影響在第一象限內(nèi),越大圖象越高;在第二象限內(nèi),越大圖象越低2.2對(duì)數(shù)函數(shù)【2.2.1】對(duì)數(shù)與對(duì)數(shù)運(yùn)算(1) 對(duì)數(shù)的定義 若,則叫做以為底的對(duì)數(shù),記作,其中叫做底數(shù),叫做真數(shù)負(fù)數(shù)和零沒(méi)有對(duì)數(shù)對(duì)數(shù)式與指數(shù)式的互化:(2)幾個(gè)重要的對(duì)數(shù)恒等式,(3)常用對(duì)數(shù)與自然對(duì)數(shù)常用對(duì)數(shù):,即;自然對(duì)數(shù):,即(其中)(4)對(duì)數(shù)的運(yùn)算性質(zhì) 如果,那么加法: 減法:數(shù)乘: 換底公式:(5)對(duì)數(shù)函數(shù)【2.2.2】對(duì)數(shù)函數(shù)及其性質(zhì)函數(shù)名稱(chēng)對(duì)數(shù)函數(shù)定義函數(shù)且叫做對(duì)數(shù)函數(shù)圖象0101定義域值域過(guò)定點(diǎn)圖象過(guò)定點(diǎn),即當(dāng)時(shí),奇偶性非奇非偶單調(diào)性在上是增函數(shù)在上是減函數(shù)函數(shù)值的變化情況變化對(duì)圖象的影響在第一象限內(nèi),越大圖象越靠低;在第四象限內(nèi),越大圖象越靠高(6)反函數(shù)的概念設(shè)函數(shù)的定義域?yàn)椋涤驗(yàn)?,從式子中解出,得式子如果?duì)于在中的任何一個(gè)值,通過(guò)式子,在中都有唯一確定的值和它對(duì)應(yīng),那么式子表示是的函數(shù),函數(shù)叫做函數(shù)的反函數(shù),記作,習(xí)慣上改寫(xiě)成(7)反函數(shù)的求法確定反函數(shù)的定義域,即原函數(shù)的值域;從原函數(shù)式中反解出;將改寫(xiě)成,并注明反函數(shù)的定義域(8)反函數(shù)的性質(zhì) 原函數(shù)與反函數(shù)的圖象關(guān)于直線對(duì)稱(chēng)函數(shù)的定義域、值域分別是其反函數(shù)的值域、定義域若在原函數(shù)的圖象上,則在反函數(shù)的圖象上一般地,函數(shù)要有反函數(shù)則它必須為單調(diào)函數(shù)2.3冪函數(shù)(1)冪函數(shù)的定義 一般地,函數(shù)叫做冪函數(shù),其中為自變量,是常數(shù)(2)冪函數(shù)的圖象(3)冪函數(shù)的性質(zhì)圖象分布:冪函數(shù)圖象分布在第一、二、三象限,第四象限無(wú)圖象冪函數(shù)是偶函數(shù)時(shí),圖象分布在第一、二象限(圖象關(guān)于軸對(duì)稱(chēng));是奇函數(shù)時(shí),圖象分布在第一、三象限(圖象關(guān)于原點(diǎn)對(duì)稱(chēng));是非奇非偶函數(shù)時(shí),圖象只分布在第一象限 過(guò)定點(diǎn):所有的冪函數(shù)在都有定義,并且圖象都通過(guò)點(diǎn) 單調(diào)性:如果,則冪函數(shù)的圖象過(guò)原點(diǎn),并且在上為增函數(shù)如果,則冪函數(shù)的圖象在上為減函數(shù),在第一象限內(nèi),圖象無(wú)限接近軸與軸奇偶性:當(dāng)為奇數(shù)時(shí),冪函數(shù)為奇函數(shù),當(dāng)為偶數(shù)時(shí),冪函數(shù)為偶函數(shù)當(dāng)(其中互質(zhì),和),若為奇數(shù)為奇數(shù)時(shí),則是奇函數(shù),若為奇數(shù)為偶數(shù)時(shí),則是偶函數(shù),若為偶數(shù)為奇數(shù)時(shí),則是非奇非偶函數(shù)圖象特征:冪函數(shù),當(dāng)時(shí),若,其圖象在直線下方,若,其圖象在直線上方,當(dāng)時(shí),若,其圖象在直線上方,若,其圖象在直線下方補(bǔ)充知識(shí)二次函數(shù)(1)二次函數(shù)解析式的三種形式一般式: 頂點(diǎn)式:兩根式:(2)求二次函數(shù)解析式的方法已知三個(gè)點(diǎn)坐標(biāo)時(shí),宜用一般式已知拋物線的頂點(diǎn)坐標(biāo)或與對(duì)稱(chēng)軸有關(guān)或與最大(?。┲涤嘘P(guān)時(shí),常用頂點(diǎn)式若已知拋物線與軸有兩個(gè)交點(diǎn),且橫線坐標(biāo)已知時(shí),用兩根式求更方便(3)二次函數(shù)圖象的性質(zhì)二次函數(shù)的圖象是一條拋物線,對(duì)稱(chēng)軸方程為頂點(diǎn)坐標(biāo)是當(dāng)時(shí),拋物線開(kāi)口向上,函數(shù)在上遞減,在上遞增,當(dāng)時(shí),;當(dāng)時(shí),拋物線開(kāi)口向下,函數(shù)在上遞增,在上遞減,當(dāng)時(shí),二次函數(shù)當(dāng)時(shí),圖象與軸有兩個(gè)交點(diǎn)(4)一元二次方程根的分布一元二次方程根的分布是二次函數(shù)中的重要內(nèi)容,這部分知識(shí)在初中代數(shù)中雖有所涉及,但尚不夠系統(tǒng)和完整,且解決的方法偏重于二次方程根的判別式和根與系數(shù)關(guān)系定理(韋達(dá)定理)的運(yùn)用,下面結(jié)合二次函數(shù)圖象的性質(zhì),系統(tǒng)地來(lái)分析一元二次方程實(shí)根的分布 設(shè)一元二次方程的兩實(shí)根為,且令,從以下四個(gè)方面來(lái)分析此類(lèi)問(wèn)題:開(kāi)口方向: 對(duì)稱(chēng)軸位置: 判別式: 端點(diǎn)函數(shù)值符號(hào) kx1x2 x1x2k x1kx2 af(k)0 k1x1x2k2 有且僅有一個(gè)根x1(或x2)滿(mǎn)足k1x1(或x2)k2 f(k1)f(k2)0,并同時(shí)考慮f(k1)=0或f(k2)=0這兩種情況是否也符合 k1x1k2p1x2p2 此結(jié)論可直接由推出 (5)二次函數(shù)在閉區(qū)間上的最值 設(shè)在區(qū)間上的最大值為,最小值為,令()當(dāng)時(shí)(開(kāi)口向上)若,則 若,則 若,則xy0aOabx2-=pqf(p)f(q)xy0aOabx2-=pqf(p)f(q)xy0aOabx2-=pqf(p)f(q)xy0aOabx2-=pqf(p)f(q)若,則 ,則xy0aOabx2-=pqf(p)f(q)()當(dāng)時(shí)(開(kāi)口向下)若,則 若,則 若,則xy0aOabx2-=pqf(p)f(q)xy0aOabx2-=pqf(p)f(q)xy0aOabx2-=pqf(p)f(q)若,則 ,則xy0aOabx2-=pqf(p)f(q)xy0 L AB公理1作用:判斷直線是否在平面內(nèi)CBA(2)公理2:過(guò)不在一條直線上的三點(diǎn),有且只有一個(gè)平面。符號(hào)表示為:A、B、C三點(diǎn)不共線 = 有且只有一個(gè)平面,使A、B、C。公理2作用:確定一個(gè)平面的依據(jù)。(3)公理3:如果兩個(gè)不重合的平面有一個(gè)公共點(diǎn),那么它們有且只有一條過(guò)該點(diǎn)的公共直線。PL符號(hào)表示為:P =L,且PL公理3作用:判定兩個(gè)平面是否相交的依據(jù)2.1.2 空間中直線與直線之間的位置關(guān)系1 空間的兩條直線有如下三種關(guān)系:共面直線 相交直線:同一平面內(nèi),有且只有一個(gè)公共點(diǎn);平行直線:同一平面內(nèi),沒(méi)有公共點(diǎn);異面直線: 不同在任何一個(gè)平面內(nèi),沒(méi)有公共點(diǎn)。2 公理4:平行于同一條直線的兩條直線互相平行。符號(hào)表示為:設(shè)a、b、c是三條直線=acabcb強(qiáng)調(diào):公理4實(shí)質(zhì)上是說(shuō)平行具有傳遞性,在平面、空間這個(gè)性質(zhì)都適用。公理4作用:判斷空間兩條直線平行的依據(jù)。3 等角定理:空間中如果兩個(gè)角的兩邊分別對(duì)應(yīng)平行,那么這兩個(gè)角相等或互補(bǔ)4 注意點(diǎn): a與b所成的角的大小只由a、b的相互位置來(lái)確定,與O的選擇無(wú)關(guān),為簡(jiǎn)便,點(diǎn)O一般取在兩直線中的一條上; 兩條異面直線所成的角(0, ); 當(dāng)兩條異面直線所成的角是直角時(shí),我們就說(shuō)這兩條異面直線互相垂直,記作ab; 兩條直線互相垂直,有共面垂直與異面垂直兩種情形; 計(jì)算中,通常把兩條異面直線所成的角轉(zhuǎn)化為兩條相交直線所成的角。2.1.3 2.1.4 空間中直線與平面、平面與平面之間的位置關(guān)系1、直線與平面有三種位置關(guān)系:(1)直線在平面內(nèi) 有無(wú)數(shù)個(gè)公共點(diǎn)(2)直線與平面相交 有且只有一個(gè)公共點(diǎn)(3)直線在平面平行 沒(méi)有公共點(diǎn)指出:直線與平面相交或平行的情況統(tǒng)稱(chēng)為直線在平面外,可用a 來(lái)表示a a=A a2.2.直線、平面平行的判定及其性質(zhì)2.2.1 直線與平面平行的判定1、直線與平面平行的判定定理:平面外一條直線與此平面內(nèi)的一條直線平行,則該直線與此平面平行。 簡(jiǎn)記為:線線平行,則線面平行。符號(hào)表示:a b aab2.2.2 平面與平面平行的判定1、兩個(gè)平面平行的判定定理:一個(gè)平面內(nèi)的兩條交直線與另一個(gè)平面平行,則這兩個(gè)平面平行。符號(hào)表示:a b ab = P ab2、判斷兩平面平行的方法有三種:(1)用定義; (2)判定定理;(3)垂直于同一條直線的兩個(gè)平面平行。2.2.3 2.2.4直線與平面、平面與平面平行的性質(zhì)1、定理:一條直線與一個(gè)平面平行,則過(guò)這條直線的任一平面與此平面的交線與該直線平行。簡(jiǎn)記為:線面平行則線線平行。符號(hào)表示:aa ab= b作用:利用該定理可解決直線間的平行問(wèn)題。2、定理:如果兩個(gè)平面同時(shí)與第三個(gè)平面相交,那么它們的交線平行。符號(hào)表示:= a ab = b作用:可以由平面與平面平行得出直線與直線平行2.3直線、平面垂直的判定及其性質(zhì)2.3.1直線與平面垂直的判定1、定義如果直線L與平面內(nèi)的任意一條直線都垂直,我們就說(shuō)直線L與平面互相垂直,記作L,直線L叫做平面的垂線,平面叫做直線L的垂面。如圖,直線與平面垂直時(shí),它們唯一公共點(diǎn)P叫做垂足。 L p 2、判定定理:一條直線與一個(gè)平面內(nèi)的兩條相交直線都垂直,則該直線與此平面垂直。注意點(diǎn): a)定理中的“兩條相交直線”這一條件不可忽視;b)定理體現(xiàn)了“直線與平面垂直”與“直線與直線垂直”互相轉(zhuǎn)化的數(shù)學(xué)思想。2.3.2平面與平面垂直的判定1、二面角的概念:表示從空間一直線出發(fā)的兩個(gè)半平面所組成的圖形A 梭 l B 2、二面角的記法:二面角-l-或-AB-3、兩個(gè)平面互相垂直的判定定理:一個(gè)平面過(guò)另一個(gè)平面的垂線,則這兩個(gè)平面垂直。2.3.3 2.3.4直線與平面、平面與平面垂直的性質(zhì)1、定理:垂直于同一個(gè)平面的兩條直線平行。2性質(zhì)定理: 兩個(gè)平面垂直,則一個(gè)平面內(nèi)垂直于交線的直線與另一個(gè)平面垂直。第三章 直線與方程3.1直線的傾斜角和斜率3.1傾斜角和斜率1、直線的傾斜角的概念:當(dāng)直線l與x軸相交時(shí), 取x軸作為基準(zhǔn), x軸正向與直線l向上方向之間所成的角叫做直線l的傾斜角.特別地,當(dāng)直線l與x軸平行或重合時(shí), 規(guī)定= 0.2、 傾斜角的取值范圍: 0180. 當(dāng)直線l與x軸垂直時(shí), = 90.3、直線的斜率:一條直線的傾斜角(90)的正切值叫做這條直線的斜率,斜率常用小寫(xiě)字母k表示,也就是 k = tan當(dāng)直線l與x軸平行或重合時(shí), =0, k = tan0=0;當(dāng)直線l與x軸垂直時(shí), = 90, k 不存在.由此可知, 一條直線l的傾斜角一定存在,但是斜率k不一定存在.4、 直線的斜率公式:給定兩點(diǎn)P1(x1,y1),P2(x2,y2),x1x2,用兩點(diǎn)的坐標(biāo)來(lái)表示直線P1P2的斜率:斜率公式: 3.1.2兩條直線的平行與垂直1、兩條直線都有斜率而且不重合,如果它們平行,那么它們的斜率相等;反之,如果它們的斜率相等,那么它們平行,即注意: 上面的等價(jià)是在兩條直線不重合且斜率存在的前提下才成立的,缺少這個(gè)前提,結(jié)論并不成立即如果k1=k2, 那么一定有L1L22、兩條直線都有斜率,如果它們互相垂直,那么它們的斜率互為負(fù)倒數(shù);反之,如果它們的斜率互為負(fù)倒數(shù),那么它們互相垂直,即3.2.1 直線的點(diǎn)斜式方程1、直線的點(diǎn)斜式方程:直線經(jīng)過(guò)點(diǎn),且斜率為 2、直線的斜截式方程:已知直線的斜率為,且與軸的交點(diǎn)為 3.2.2 直線的兩點(diǎn)式方程1、直線的兩點(diǎn)式方程:已知兩點(diǎn)其中 y-y1/y-y2=x-x1/x-x22、直線的截距式方程:已知直線與軸的交點(diǎn)為A,與軸的交點(diǎn)為B,其中3.2.3 直線的一般式方程1、直線的一般式方程:關(guān)于的二元一次方程(A,B不同時(shí)為0)2、各種直線方程之間的互化。3.3直線的交點(diǎn)坐標(biāo)與距離公式3.3.1兩直線的交點(diǎn)坐標(biāo)1、給出例題:兩直線交點(diǎn)坐標(biāo)L1 :3x+4y-2=0 L1:2x+y +2=0 解:解方程組 得 x=-2,y=2所以L1與L2的交點(diǎn)坐標(biāo)為M(-2,2)3.3.2 兩點(diǎn)間距離兩點(diǎn)間的距離公式3.3.3 點(diǎn)到直線的距離公式1點(diǎn)到直線距離公式:點(diǎn)到直線的距離為:2、兩平行線間的距離公式:已知兩條平行線直線和的一般式方程為:,:,則與的距離為第四章 圓與方程4.1.1 圓的標(biāo)準(zhǔn)方程1、圓的標(biāo)準(zhǔn)方程:圓心為A(
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 贛南師范大學(xué)《臨床藥學(xué)》2023-2024學(xué)年第一學(xué)期期末試卷
- 《淺談虛擬機(jī)》課件
- 上半年教職工政治理論學(xué)習(xí)個(gè)人工作參考計(jì)劃范文
- 《公共心理學(xué)》課件
- 管理實(shí)務(wù)培訓(xùn)課件
- 常德特色美術(shù)課件小學(xué)生
- 2021年中藥基礎(chǔ)知識(shí)考試題庫(kù)
- 《最佳治療寶寶濕疹》課件
- 消息編寫(xiě)培訓(xùn)課件
- 《拉曼光纖放大器》課件
- 中國(guó)地質(zhì)大學(xué)(武漢)教育發(fā)展基金會(huì)籌備成立情況報(bào)告
- 萬(wàn)噸鈦白粉項(xiàng)目建議
- 第四章破產(chǎn)法(破產(chǎn)法)教學(xué)課件
- PE拖拉管施工方案標(biāo)準(zhǔn)版
- 7725i進(jìn)樣閥說(shuō)明書(shū)
- 鐵路建設(shè)項(xiàng)目施工企業(yè)信用評(píng)價(jià)辦法(鐵總建設(shè)〔2018〕124號(hào))
- 時(shí)光科技主軸S系列伺服控制器說(shuō)明書(shū)
- 無(wú)機(jī)非金屬材料專(zhuān)業(yè) 畢業(yè)設(shè)計(jì)論文 年產(chǎn)240萬(wàn)平方米釉面地磚陶瓷工廠設(shè)計(jì)
- 社會(huì)組織績(jī)效考核管理辦法
- 密封固化劑配方分析
- 國(guó)際項(xiàng)目管理專(zhuān)業(yè)資質(zhì)認(rèn)證(ipmp)b級(jí)報(bào)告模板
評(píng)論
0/150
提交評(píng)論