



免費預(yù)覽已結(jié)束,剩余1頁可下載查看
下載本文檔
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
雞兔同籠問題解法及例題透析【含義】這是古典的算術(shù)問題。已知籠子里雞、兔共有多少只和多少只腳,求雞、兔各有多少只的問題,叫做第一雞兔同籠問題。已知雞兔的總數(shù)和雞腳與兔腳的差,求雞、兔各是多少的問題叫做第二雞兔同籠問題。【數(shù)量關(guān)系】第一雞兔同籠問題:假設(shè)全都是雞,則有兔數(shù)(實際腳數(shù)2雞兔總數(shù))(42)假設(shè)全都是兔,則有雞數(shù)(4雞兔總數(shù)實際腳數(shù))(42)第二雞兔同籠問題:假設(shè)全都是雞,則有兔數(shù)(2雞兔總數(shù)雞與兔腳之差)(42)假設(shè)全都是兔,則有雞數(shù)(4雞兔總數(shù)雞與兔腳之差)(42)【解題思路和方法】解答此類題目一般都用假設(shè)法,可以先假設(shè)都是雞,也可以假設(shè)都是兔。如果先假設(shè)都是雞,然后以兔換雞;如果先假設(shè)都是兔,然后以雞換兔。這類問題也叫置換問題。通過先假設(shè),再置換,使問題得到解決。例1長毛兔子蘆花雞,雞兔圈在一籠里。數(shù)數(shù)頭有三十五,腳數(shù)共有九十四。請你仔細算一算,多少兔子多少雞?解假設(shè)35只全為兔,則雞數(shù)(43594)(42)23(只)兔數(shù)352312(只)也可以先假設(shè)35只全為雞,則兔數(shù)(94235)(42)12(只)雞數(shù)351223(只)答:有雞23只,有兔12只。例22畝菠菜要施肥1千克,5畝白菜要施肥3千克,兩種菜共16畝,施肥9千克,求白菜有多少畝?解此題實際上是改頭換面的“雞兔同籠”問題?!懊慨€菠菜施肥(12)千克”與“每只雞有兩個腳”相對應(yīng),“每畝白菜施肥(35)千克”與“每只兔有4只腳”相對應(yīng),“16畝”與“雞兔總數(shù)”相對應(yīng),“9千克”與“雞兔總腳數(shù)”相對應(yīng)。假設(shè)16畝全都是菠菜,則有白菜畝數(shù)(91216)(3512)10(畝)答:白菜地有10畝。例3李老師用69元給學(xué)校買作業(yè)本和日記本共45本,作業(yè)本每本3.20元,日記本每本0.70元。問作業(yè)本和日記本各買了多少本?解此題可以變通為“雞兔同籠”問題。假設(shè)45本全都是日記本,則有作業(yè)本數(shù)(690.7045)(3.200.70)15(本)日記本數(shù)451530(本)例4(第二雞兔同籠問題)雞兔共有100只,雞的腳比兔的腳多80只,問雞與兔各多少只?解假設(shè)100只全都是雞,則有兔數(shù)(210080)(42)20(只)雞數(shù)1002080(只)答:有雞80只,有兔20只。例5有100個饃100個和尚吃,大和尚一人吃3個饃,小和尚3人吃1個饃,問大小和尚各多少人?解假設(shè)全為大和尚,則共吃饃(3100)個,比實際多吃(3100100)個,這是因為把小和尚也算成了大和尚,因此我們在保證和尚總數(shù)100不變的情況下,以“小”換“大”,一個小和尚換掉一個大和尚可減少饃(31/3)個。因此,共有小和尚(3100100)(31/3)75(人)共有大和尚1007525(人)答:共有大和尚25人,有小和尚75人。雞兔同籠問題例題透析11、有若干只雞和兔子,它們共有88個頭,244只腳,雞和兔各有多少只?解:我們設(shè)想,每只雞都是“金雞獨立”,一只腳站著;而每只兔子都用兩條后腿,像人一樣用兩只腳站著.現(xiàn)在,地面上出現(xiàn)腳的總數(shù)的一半,也就是 2442=122(只).在122這個數(shù)里,雞的頭數(shù)算了一次,兔子的頭數(shù)相當于算了兩次.因此從122減去總頭數(shù)88,剩下的就是兔子頭數(shù) 122-88=34,有34只兔子.當然雞就有54只. 答:有兔子34只,雞54只.上面的計算,可以歸結(jié)為下面算式: 總腳數(shù)2-總頭數(shù)=兔子數(shù).上面的解法是孫子算經(jīng)中記載的.做一次除法和一次減法,馬上能求出兔子數(shù),多簡單!能夠這樣算,主要利用了兔和雞的腳數(shù)分別是4和2,4又是2的2倍.可是,當其他問題轉(zhuǎn)化成這類問題時,“腳數(shù)”就不一定是4和2,上面的計算方法就行不通.因此,我們對這類問題給出一種一般解法.還說此題.如果設(shè)想88只都是兔子,那么就有488只腳,比244只腳多了884-244=108(只).每只雞比兔子少(4-2)只腳,所以共有雞(884-244)(4-2)= 54(只).說明我們設(shè)想的88只“兔子”中,有54只不是兔子.而是雞.因此可以列出公式雞數(shù)=(兔腳數(shù)總頭數(shù)-總腳數(shù))(兔腳數(shù)-雞腳數(shù)).當然,我們也可以設(shè)想88只都是“雞”,那么共有腳288=176(只),比244只腳少了244-176=68(只).每只雞比每只兔子少(4-2)只腳,682=34(只).說明設(shè)想中的“雞”,有34只是兔子,也可以列出公式兔數(shù)=(總腳數(shù)-雞腳數(shù)總頭數(shù))(兔腳數(shù)-雞腳數(shù)).上面兩個公式不必都用,用其中一個算出兔數(shù)或雞數(shù),再用總頭數(shù)去減,就知道另一個數(shù).假設(shè)全是雞,或者全是兔,通常用這樣的思路求解,有人稱為“假設(shè)法”.雞兔同籠問題例題透析2紅鉛筆每支0.19元,藍鉛筆每支0.11元,兩種鉛筆共買了16支,花了2.80元.問紅、藍鉛筆各買幾支?解:以“分”作為錢的單位.我們設(shè)想,一種“雞”有11只腳,一種“兔子”有19只腳,它們共有16個頭,280只腳.現(xiàn)在已經(jīng)把買鉛筆問題,轉(zhuǎn)化成“雞兔同籠”問題了.利用上面算兔數(shù)公式,就有藍筆數(shù)=(1916-280)(19-11)=248=3(支).紅筆數(shù)=16-3=13(支).答:買了13支紅鉛筆和3支藍鉛筆.對于這類問題的計算,常??梢岳靡阎_數(shù)的特殊性.例2中的“腳數(shù)”19與11之和是30.我們也可以設(shè)想16只中,8只是“兔子”,8只是“雞”,根據(jù)這一設(shè)想,腳數(shù)是8(11+19)=240.比280少40.40(19-11)=5.就知道設(shè)想中的8只“雞”應(yīng)少5只,也就是“雞”(藍鉛筆)數(shù)是3.308比1916或1116要容易計算些.利用已知數(shù)的特殊性,靠心算來完成計算.實際上,可以任意設(shè)想一個方便的兔數(shù)或雞數(shù).例如,設(shè)想16只中,“兔數(shù)”為10,“雞數(shù)”為6,就有腳數(shù)1910+116=256.比280少24.24(19-11)=3,就知道設(shè)想6只“雞”,要少3只.要使設(shè)想的數(shù),能給計算帶來方便,常常取決于你的心算本領(lǐng).雞兔同籠問題例題透析3一份稿件,甲單獨打字需6小時完成.乙單獨打字需10小時完成,現(xiàn)在甲單獨打若干小時后,因有事由乙接著打完,共用了7小時.甲打字用了多少小時?解:我們把這份稿件平均分成30份(30是6和10的最小公倍數(shù)),甲每小時打306=5(份),乙每小時打3010=3(份).現(xiàn)在把甲打字的時間看成“兔”頭數(shù),乙打字的時間看成“雞”頭數(shù),總頭數(shù)是7.“兔”的腳數(shù)是5,“雞”的腳數(shù)是3,總腳數(shù)是30,就把問題轉(zhuǎn)化成“雞兔同籠”問題了.根據(jù)前面的公式 “兔”數(shù)=(30-37)(5-3)=4.5,“雞”數(shù)=7-4.5=2.5,也就是甲打字用了4.5小時,乙打字用了2.5小時. 答:甲打字用了4小時30分.小毛參加數(shù)學(xué)競賽,共做20道題,得64分,已知做對一道得5分,不做得0分,錯一題扣2分,又知道他做錯的題和沒做的一樣多問小毛做對幾道題?分析:解答雞兔同籠問題,一般采用假設(shè)法,這道題用兩次假設(shè)假設(shè)做錯的和沒做的一樣多,就假定這兩種情況都倒扣(1分);假設(shè)20道題全做對,與題中給出得64分相比較,看差多
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 折扣購買活動方案
- 教師離職告別活動方案
- 推拿志愿活動策劃方案
- 操場破冰活動方案
- 故宮親子服務(wù)活動方案
- 教學(xué)專項研討活動方案
- 投籃體能活動方案
- 教培地推活動策劃方案
- 折扣活動促銷活動方案
- 探索太空幼兒活動方案
- 菜鳥WMS(大寶)操作手冊 (修復(fù)的)
- 70歲以上老人考駕照,三力測試題庫答案
- 文件簽收回執(zhí)單
- DB4503T 0041-2022 桂林雜交鱘陸基生態(tài)養(yǎng)殖技術(shù)規(guī)程
- GB/T 33592-2017分布式電源并網(wǎng)運行控制規(guī)范
- GB/T 28046.4-2011道路車輛電氣及電子設(shè)備的環(huán)境條件和試驗第4部分:氣候負荷
- 會計知識競賽題庫附答案2021
- 廠房鋼筋混凝土地坪板工程施工方案
- 項目延期申請表(樣本)
- 固井工藝技術(shù)培訓(xùn)教學(xué)課件(77p)
- 入團志愿書(2016版本)(可編輯打印標準A4) (1)
評論
0/150
提交評論