




免費(fèi)預(yù)覽已結(jié)束,剩余10頁(yè)可下載查看
下載本文檔
版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
附錄(原文及譯文)翻譯原文來(lái)自Thomas David Heseltine BSc. Hons. The University of YorkDepartment of Computer ScienceFor the Qualification of PhD. - September 2005 -Face Recognition: Two-Dimensional and Three-Dimensional Techniques4 Two-dimensional Face Recognition4.1 Feature LocalizationBefore discussing the methods of comparing two facial images we now take a brief look at some at the preliminary processes of facial feature alignment. This process typically consists of two stages: face detection and eye localisation. Depending on the application, if the position of the face within the image is known beforehand (for a cooperative subject in a door access system for example) then the face detection stage can often be skipped, as the region of interest is already known. Therefore, we discuss eye localisation here, with a brief discussion of face detection in the literature review(section 3.1.1).The eye localisation method is used to align the 2D face images of the various test sets used throughout this section. However, to ensure that all results presented arerepresentative of the face recognition accuracy and not a product of the performance of the eye localisation routine, all image alignments are manually checked and any errors corrected, prior to testing and evaluation.We detect the position of the eyes within an image using a simple template basedmethod. A training set of manually pre-aligned images of faces is taken, and eachimage cropped to an area around both eyes. The average image is calculated and usedas a template.Figure 4-1 - The average eyes. Used as a template for eye detection.Both eyes are included in a single template, rather than individually searching for each eye in turn, as the characteristic symmetry of the eyes either side of the nose, provides a useful feature that helps distinguish between the eyes and other false positives that may be picked up in the background. Although this method is highly susceptible to scale(i.e. subject distance from the camera) and also introduces the assumption that eyes in the image appear near horizontal. Some preliminary experimentation also reveals that it is advantageous to include the area of skin just beneath the eyes. The reason being that in some cases the eyebrows can closely match the template, particularly if there are shadows in the eye-sockets, but the area of skin below the eyes helps to distinguish the eyes from eyebrows (the area just below the eyebrows contain eyes, whereas the area below the eyes contains only plain skin).A window is passed over the test images and the absolute difference taken to that of the average eye image shown above. The area of the image with the lowest difference is taken as the region of interest containing the eyes. Applying the same procedure using a smaller template of the individual left and right eyes then refines each eye position.This basic template-based method of eye localisation, although providing fairly preciselocalisations, often fails to locate the eyes completely. However, we are able toimprove performance by including a weighting scheme.Eye localisation is performed on the set of training images, which is then separated into two sets: those in which eye detection was successful; and those in which eye detection failed. Taking the set of successful localisations we compute the average distance from the eye template (Figure 4-2 top). Note that the image is quite dark, indicating that the detected eyes correlate closely to the eye template, as we would expect. However, bright points do occur near the whites of the eye, suggesting that this area is often inconsistent, varying greatly from the average eye template.Figure 4-2 Distance to the eye template for successful detections (top) indicating variance due tonoise and failed detections (bottom) showing credible variance due to miss-detected features.In the lower image (Figure 4-2 bottom), we have taken the set of failed localisations(images of the forehead, nose, cheeks, background etc. falsely detected by the localisation routine) and once again computed the average distance from the eye template. The bright pupils surrounded by darker areas indicate that a failed match is often due to the high correlation of the nose and cheekbone regions overwhelming the poorly correlated pupils. Wanting to emphasise the difference of the pupil regions for these failed matches and minimise the variance of the whites of the eyes for successful matches, we divide the lower image values by the upper image to produce a weights vector as shown in Figure 4-3. When applied to the difference image before summing a total error, this weighting scheme provides a much improved detection rate.Figure 4-3 - Eye template weights used to give higher priority to those pixels that best represent the eyes.4.2 The Direct Correlation ApproachWe begin our investigation into face recognition with perhaps the simplest approach,known as the direct correlation method (also referred to as template matching by Brunelli and Poggio 29 ) involving the direct comparison of pixel intensity values taken from facial images. We use the term Direct Correlation to encompass all techniques in which face images are compared directly, without any form of image space analysis, weighting schemes or feature extraction, regardless of the distance metric used. Therefore, we do not infer that Pearsons correlation is applied as the similarity function (although such an approach would obviously come under our definition of direct correlation). We typically use the Euclidean distance as our metric in these investigations (inversely related to Pearsons correlation and can be considered as a scale and translation sensitive form of image correlation), as this persists with the contrast made between image space and subspace approaches in later sections.Firstly, all facial images must be aligned such that the eye centres are located at two specified pixel coordinates and the image cropped to remove any backgroundinformation. These images are stored as greyscale bitmaps of 65 by 82 pixels and prior to recognition converted into a vector of 5330 elements (each element containing the corresponding pixel intensity value). Each corresponding vector can be thought of as describing a point within a 5330 dimensional image space. This simple principle can easily be extended to much larger images: a 256 by 256 pixel image occupies a single point in 65,536-dimensional image space and again, similar images occupy close points within that space. Likewise, similar faces are located close together within the image space, while dissimilar faces are spaced far apart. Calculating the Euclidean distance d, between two facial image vectors (often referred to as the query image q, and gallery image g), we get an indication of similarity. A threshold is then applied to make the final verification decision.d = q - g (d threshold accept ) (d threshold reject ) . Equ. 4-14.2.1 Verification TestsThe primary concern in any face recognition system is its ability to correctly verify a claimed identity or determine a persons most likely identity from a set of potential matches in a database. In order to assess a given systems ability to perform these tasks, a variety of evaluation methodologies have arisen. Some of these analysis methods simulate a specific mode of operation (i.e. secure site access or surveillance), while others provide a more mathematical description of data distribution in someclassification space. In addition, the results generated from each analysis method maybe presented in a variety of formats. Throughout the experimentations in this thesis, we primarily use the verification test as our method of analysis and comparison, although we also use Fishers Linear Discriminant to analyse individual subspace components in section 7 and the identification test for the final evaluations described in section 8. The verification test measures a systems ability to correctly accept or reject the proposed identity of an individual. At a functional level, this reduces to two images being presented for comparison, for which the system must return either an acceptance (the two images are of the same person) or rejection (the two images are of different people). The test is designed to simulate the application area of secure site access. In this scenario, a subject will present some form of identification at a point of entry, perhaps as a swipe card, proximity chip or PIN number. This number is then used to retrieve a stored image from a database of known subjects (often referred to as the target or gallery image) and compared with a live image captured at the point of entry (the query image). Access is then granted depending on the acceptance/rejection decision. The results of the test are calculated according to how many times the accept/reject decision is made correctly. In order to execute this test we must first define our test set of face images. Although the number of images in the test set does not affect the results produced (as the error rates are specified as percentages of image comparisons), it is important to ensure that the test set is sufficiently large such that statistical anomalies become insignificant (for example, a couple of badly aligned images matching well). Also, the type of images (high variation in lighting, partial occlusions etc.) will significantly alter the results of the test. Therefore, in order to compare multiple face recognition systems, they must be applied to the same test set. However, it should also be noted that if the results are to be representative of system performance in a real world situation, then the test data should be captured under precisely the same circumstances as in the application environment.On the other hand, if the purpose of the experimentation is to evaluate and improve a method of face recognition, which may be applied to a range of application environments, then the test data should present the range of difficulties that are to be overcome. This may mean including a greater percentage of difficult images than would be expected in the perceived operating conditions and hence higher error rates in the results produced. Below we provide the algorithm for executing the verification test. The algorithm is applied to a single test set of face images, using a single function call to the face recognition algorithm: CompareFaces(FaceA, FaceB). This call is used to compare two facial images, returning a distance score indicating how dissimilar the two face images are: the lower the score the more similar the two face images. Ideally, images of the same face should produce low scores, while images of different faces should produce high scores.Every image is compared with every other image, no image is compared with itself and no pair is compared more than once (we assume that the relationship is symmetrical). Once two images have been compared, producing a similarity score, the ground-truth is used to determine if the images are of the same person or different people. In practical tests this information is often encapsulated as part of the image filename (by means of a unique person identifier). Scores are then stored in one of two lists: a list containing scores produced by comparing images of different people and a list containing scores produced by comparing images of the same person. The final acceptance/rejection decision is made by application of a threshold. Any incorrect decision is recorded as either a false acceptance or false rejection. The false rejection rate (FRR) is calculated as the percentage of scores from the same people that were classified as rejections. The false acceptance rate (FAR) is calculated as the percentage of scores from different people that were classified as acceptances.For IndexA = 0 to length(TestSet)For IndexB = IndexA+1 to length(TestSet)Score = CompareFaces(TestSetIndexA, TestSetIndexB)If IndexA and IndexB are the same personAppend Score to AcceptScoresListElseAppend Score to RejectScoresListFor Threshold = Minimum Score to Maximum Score:FalseAcceptCount, FalseRejectCount = 0For each Score in RejectScoresListIf Score ThresholdIncrease FalseRejectCountFalseAcceptRate = FalseAcceptCount / Length(AcceptScoresList)FalseRejectRate = FalseRejectCount / length(RejectScoresList)Add plot to error curve at (FalseRejectRate, FalseAcceptRate)These two error rates express the inadequacies of the system when operating at aspecific threshold value. Ideally, both these figures should be zero, but in reality reducing either the FAR or FRR (by altering the threshold value) will inevitably resultin increasing the other. Therefore, in order to describe the full operating range of aparticular system, we vary the threshold value through the entire range of scoresproduced. The application of each threshold value produces an additional FAR, FRRpair, which when plotted on a graph produces the error rate curve shown below.Figure 4-5 - Example Error Rate Curve produced by the verification test.The equal error rate (EER) can be seen as the point at which FAR is equal to FRR. This EER value is often used as a single figure representing the general recognitionperformance of a biometric system and allows for easy visual comparison of multiplemethods. However, it is important to note that the EER does not indicate the level oferror that would be expected in a real world application. It is unlikely that any realsystem would use a threshold value such that the percentage of false acceptances wereequal to the percentage of false rejections. Secure site access systems would typicallyset the threshold such that false acceptances were significantly lower than false rejections: unwilling to tolerate intruders at the cost of inconvenient access denials.Surveillance systems on the other hand would require low false rejection rates tosuccessfully identify people in a less controlled environment. Therefore we should bear in mind that a system with a lower EER might not necessarily be the better performer towards the extremes of its operating capability. There is a strong connection between the above graph and the receiver operatingcharacteristic (ROC) curves, also used in such experiments. Both graphs are simply two visualisations of the same results, in that the ROC format uses the True Acceptance Rate(TAR), where TAR = 1.0 FRR in place of the FRR, effectively flipping the graph vertically. Another visualisation of the verification test results is to display both the FRR and FAR as functions of the threshold value. This presentation format provides a reference to determine the threshold value necessary to achieve a specific FRR and FAR. The EER can be seen as the point where the two curves intersect.Figure 4-6 - Example error rate curve as a function of the score thresholdThe fluctuation of these error curves due to noise and other errors is dependant on the number of face image comparisons made to generate the data. A small dataset that only allows for a small number of comparisons will results in a jagged curve, in which large steps correspond to the influence of a single image on a high proportion of thecomparisons made. A typical dataset of 720 images (as used in section 4.2.2) provides258,840 verification operations, hence a drop of 1% EER represents an additional 2588 correct decisions, whereas the quality of a single image could cause the EER tofluctuate by up to 0.28.4.2.2 ResultsAs a simple experiment to test the direct correlation method, we apply the technique described above to a test set of 720 images of 60 different people, taken from the AR Face Database 39 . Every image is compared with every other image in the test set to produce a likeness score, providing 258,840 verification operations from which to calculate false acceptance rates and false rejection rates. The error curve produced is shown in Figure 4-7.Figure 4-7 - Error rate curve produced by the direct correlation method using no image preprocessing.We see that an EER of 25.1% is produced, meaning that at the EER thresholdapproximately one quarter of all verification operations carried out resulted in anincorrect classification. There are a number of well-known reasons for this poor levelof accuracy. Tiny changes in lighting, expression or head orientation cause the location in image space to change dramatically. Images in face space are moved far apart due to these image capture conditions, despite being of the same persons face. The distance between images of different people becomes smaller than the area of face space covered by images of the same person and hence false acceptances and false rejections occur frequently. Other disadvantages include the large amount of storage necessary for holding many face images and the intensive processing required for each comparison, making this method unsuitable for applications applied to a large database. In section 4.3 we explore the eigenface method, which attempts to address some of these issues.4 二維人臉識(shí)別4.1 功能定位在討論比較兩個(gè)人臉圖像,我們現(xiàn)在就簡(jiǎn)要介紹的方法一些在人臉特征的初步調(diào)整過(guò)程。這一過(guò)程通常兩個(gè)階段組成:人臉檢測(cè)和眼睛定位。根據(jù)不同的申請(qǐng)時(shí),如果在面部圖像的立場(chǎng)是眾所周知事先(對(duì)于合作的主題,例如在門禁系統(tǒng)),那么人臉檢測(cè)階段通??梢蕴^(guò),作為地區(qū)的利益是已知的。因此,我們討論眼睛定位在這里,有一個(gè)人臉檢測(cè)的文獻(xiàn)簡(jiǎn)短討論(第3.1.1)。眼睛定位方法用于對(duì)齊的各種測(cè)試二維人臉圖像集通篇使用這一節(jié)。但是,為了確保所有的結(jié)果都呈現(xiàn)代表面部識(shí)別準(zhǔn)確率,而不是對(duì)產(chǎn)品的性能例行的眼睛定位,所有圖像路線是手動(dòng)檢查,若有錯(cuò)誤更正前的測(cè)試和評(píng)價(jià)。我們發(fā)現(xiàn)在一個(gè)使用圖像的眼睛一個(gè)簡(jiǎn)單的基于模板的位置方法。訓(xùn)練集的前臉手動(dòng)對(duì)齊圖像是采取和各圖片進(jìn)行裁剪,以兩只眼睛周圍的地區(qū)。平均計(jì)算,用形象作為一個(gè)模板。圖4-1 - 平均眼睛,用作模板的眼睛檢測(cè)兩個(gè)眼睛都包括在一個(gè)模板,而不是單獨(dú)為每個(gè)搜索,因?yàn)檠劬Φ娜我槐亲觾蛇厡?duì)稱的特點(diǎn),提供了一個(gè)有用的功能,可以幫助
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 辦公自動(dòng)化設(shè)備與辦公用品整合供應(yīng)合同
- 老人護(hù)理app課件
- 翻譯形合意和說(shuō)課課件
- 大二政治概論考試題型及答案
- 安全培訓(xùn)課件下載
- 施工質(zhì)量事故應(yīng)急預(yù)案
- 安全生產(chǎn)24小時(shí)領(lǐng)導(dǎo)帶班制度
- 鋼結(jié)構(gòu)安全生產(chǎn)管理制度
- 空中交通安全管理
- 生產(chǎn)安全事故評(píng)估
- GB/T 8566-2022系統(tǒng)與軟件工程軟件生存周期過(guò)程
- GB/T 20975.1-2007鋁及鋁合金化學(xué)分析方法第1部分:汞含量的測(cè)定冷原子吸收光譜法
- 設(shè)計(jì)管理資料課件
- 劍橋商務(wù)英語(yǔ)BEC(初級(jí))全套課件
- 醫(yī)療器械臨床評(píng)價(jià)課件
- 滬科版九年級(jí)物理全一冊(cè)教案(完整版)教學(xué)設(shè)計(jì)含教學(xué)反思
- DB32∕T 2880-2016 光纖傳感式橋隧結(jié)構(gòu)健康監(jiān)測(cè)系統(tǒng)設(shè)計(jì)、施工及維護(hù)規(guī)范
- 開發(fā)報(bào)建流程及細(xì)則
- 潔凈室塵埃粒子檢測(cè)規(guī)范
- 系統(tǒng)開發(fā)需求確認(rèn)單
- 高中成績(jī)證明模板(共2頁(yè))
評(píng)論
0/150
提交評(píng)論