1.3.1函數(shù)的單調(diào)性例題.doc_第1頁
1.3.1函數(shù)的單調(diào)性例題.doc_第2頁
1.3.1函數(shù)的單調(diào)性例題.doc_第3頁
1.3.1函數(shù)的單調(diào)性例題.doc_第4頁
1.3.1函數(shù)的單調(diào)性例題.doc_第5頁
已閱讀5頁,還剩6頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

1.3.1函數(shù)的單調(diào)性題型一、利用函數(shù)的圖象確定函數(shù)的單調(diào)區(qū)間例1.作出下列函數(shù)的圖象,并寫出函數(shù)的單調(diào)區(qū)間(1) ; (2);(3) ; (4)相應(yīng)作業(yè)1:課本P32第3題.題型二、用定義法證明函數(shù)的單調(diào)性用定義法證明函數(shù)的單調(diào)性步驟:取值 作差變形 定號 下結(jié)論取值,即_;作差變形,作差_,變形手段有_、_、_、_等;定號,即_;下結(jié)論,即_。例2.用定義法證明下列函數(shù)的單調(diào)性(1) 證明:在上是減函數(shù).定義法證明單調(diào)性的等價形式:設(shè),,那么在上是增函數(shù);在上是減函數(shù).(2) 證明:在其定義域內(nèi)是減函數(shù);(3) 證明:在上是增函數(shù);法一: 作差 法二:作商(4) 已知函數(shù)在上為增函數(shù),且,試判斷在上的單調(diào)性,并給出證明過程;方法技巧歸納判斷函數(shù)單調(diào)性的方法:1、 直接法:熟悉的函數(shù),如一次函數(shù)、二次函數(shù)、反比例函數(shù)等;如,練習冊P27(2)P31(上5、1)2、 圖象法;3、 定義法;4、 運算性質(zhì)法:當時,函數(shù)與有相同的單調(diào)性;當時,函數(shù)與有相反的單調(diào)性;當函數(shù)恒不等于零時,與單調(diào)性相反;若,則與具有相同的單調(diào)性;若、的單調(diào)性相同,則的單調(diào)性與之不變;即:增+增=增 減+減=減若、的單調(diào)性相反,則的單調(diào)性與同.即:增-減=增 減-增=增 注意:(1)可熟記一些基本的函數(shù)的單調(diào)性,一些較復雜的函數(shù)可化為基本函數(shù)的組合形式,再利用上述結(jié)論判斷;(2)與的單調(diào)性不能確定.相應(yīng)作業(yè)2:(1)討論函數(shù)在上的單調(diào)性();(2)務(wù)必記住“對勾”函數(shù)的單調(diào)區(qū)間(見練習冊P29探究之窗.探究1)知識拓展復合函數(shù)單調(diào)性(難點)一、復習回顧:復合函數(shù)的定義:如果函數(shù)的定義域為A,函數(shù)的定義域為D,值域為C,則當時,稱函數(shù)為與在D上的復合函數(shù),其中叫做中間變量,叫內(nèi)層函數(shù),叫外層函數(shù)。二、引理1 已知函數(shù)y=fg(x).若t=g(x)在區(qū)間(a,b)上是增函數(shù),其值域為(c,d),又函數(shù)y=f(t)在區(qū)間(c,d)上是增函數(shù),那么,原復合函數(shù)y=fg(x)在區(qū)間(a,b)上是增函數(shù). 引理2 已知函數(shù)y=fg(x).若t=g(x)在區(qū)間(a,b)上是減函數(shù),其值域為(c,d),又函數(shù)y=f(t)在區(qū)間(c,d)上是減函數(shù),那么,復合函數(shù)y=fg(x)在區(qū)間(a,b)上是增函數(shù).引理1的證明:重要結(jié)論1:復合法則若則增增增減減增增減減減增減規(guī)律可簡記為“_”(四個字)重要結(jié)論2:若一個函數(shù)是由多個簡單函數(shù)復合而成的,則此復合函數(shù)的單調(diào)性由簡單函數(shù)中減函數(shù)的個數(shù)決定:若減函數(shù)有偶數(shù)個,則復合函數(shù)為增函數(shù);若減函數(shù)有奇數(shù)個,則復合函數(shù)為減函數(shù).規(guī)律可簡記為“_”(四個字)題型三、求復合函數(shù)的單調(diào)區(qū)間例3. 求下列函數(shù)的單調(diào)區(qū)間.(1) (2)小結(jié):1、注意:(1)求單調(diào)區(qū)間必先求定義域;(2) 單調(diào)區(qū)間必須是定義域的子集;(3) 寫多個單調(diào)區(qū)間時,區(qū)間之間不能用“”并起來,應(yīng)用“,”隔開.2、 判斷復合函數(shù)單調(diào)性步驟:求函數(shù)的定義域;將復合函數(shù)分解成基本初等函數(shù):與;確定兩個函數(shù)的單調(diào)性;由復合法則“同増異減”得出復合函數(shù)單調(diào)性.相應(yīng)作業(yè)3:求下列函數(shù)的單調(diào)區(qū)間.(1) (2)(3)單調(diào)性的應(yīng)用題型四、比較函數(shù)值的大小例4.已知函數(shù)在上是減函數(shù),試比較與的大小.題型五、已知單調(diào)性,求參數(shù)范圍例5.已知函數(shù)(1) 若的減區(qū)間是,求實數(shù)的值;(2) 若在上單調(diào)遞減,求實數(shù)的取值范圍.例6.若函數(shù)在R上為增函數(shù),求實數(shù)的取值范圍.題型六、利用單調(diào)性,求解抽象不等式例7.已知函數(shù)是上的減函數(shù),且,求實數(shù)的取值范圍.例8.已知是定義在上的增函數(shù),且,且,解不等式.相應(yīng)作業(yè)4:已知是定義在上的增函數(shù),且,且,解不等式. 題型七、抽象函數(shù)單調(diào)性的判斷定義法解決此類問題有兩種方法:“湊”,湊定義或湊已知條件,從而使用定義或已知條件得出結(jié)論;賦值法,給變量賦值要根據(jù)條件與結(jié)論的關(guān)系,有時可能要進行多次嘗試.例9.已知函數(shù)對任意實數(shù)、都有,且當時,求證:在R上單調(diào)遞增.例10.已知定義在上的函數(shù)對任意、,恒有,且當時,判斷在上單調(diào)性.相應(yīng)作業(yè)5:定義在上的函數(shù)對任意、,滿足,且當時.(1) 求的值;(2) 求證:;(3)求證:在上是增函數(shù);(4)若,解不等式;函數(shù)的最大(?。┲?、 函數(shù)的最大(?。┲刀x2、 利用單調(diào)性求最值常用結(jié)論(1) 若函數(shù)在閉區(qū)間上單調(diào)遞增,則,;(2) 若函數(shù)在閉區(qū)間上單調(diào)遞減,則,;(3) 若函數(shù)在開區(qū)間上單調(diào)遞增,則函數(shù)無最值,但值域為;(4) 若函數(shù)在閉區(qū)間上單調(diào)遞增,在閉區(qū)間上單調(diào)遞減,那么函數(shù),在處有最大值,即;(5) 若函數(shù)在閉區(qū)間上單調(diào)遞減,在閉區(qū)間上單調(diào)遞增,那么函數(shù),在處有最小值,即.題型八、單調(diào)性法求函數(shù)最值(值域)例11、(1)函數(shù)在上的最大值為_,最小值為_;(2) 函數(shù)在上的最大值為_,最小值為_;(3) 函數(shù)的值域為_;(4) 函數(shù)的值域為_;(5) 函數(shù)的值域為_;(6)函數(shù)的值域為_;二次函數(shù)的區(qū)間最值的求法二次函數(shù)在給定區(qū)間上求最值,常見類型:(1) 定軸定區(qū)間:對稱軸與區(qū)間均是確定的;(2) 動軸定區(qū)間:(3) 定軸動區(qū)間:(4) 動軸動區(qū)間:1、 定軸定區(qū)間可數(shù)形結(jié)合,較易解決,注意對稱軸與區(qū)間位置關(guān)系。例12.當時,求函數(shù)的最值.相應(yīng)作業(yè)6:求函數(shù)在上的最值.2、動軸定區(qū)間例13.已知函數(shù),求在上的最值.動軸定區(qū)間問題一般解法:對對稱軸在區(qū)間左側(cè)、右側(cè)、內(nèi)部三種情況進行討論,從而確定最值在區(qū)間端點處還是在頂點處取得.相應(yīng)作業(yè)7:

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論