6.1(2)平方根.docx_第1頁
6.1(2)平方根.docx_第2頁
6.1(2)平方根.docx_第3頁
6.1(2)平方根.docx_第4頁
免費預覽已結(jié)束,剩余1頁可下載查看

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

6.1.2平方根第2課時【教學目標】知識與技能:會用計算器求算術(shù)平方根;了解無限不循環(huán)小數(shù)的特點;會用算術(shù)平方根的知識解決實際問題。過程與方法:通過折紙認識第一個無理數(shù),并通過估計它的大小認識無限不循環(huán)小數(shù)的特點。用計算器計算算術(shù)平方根,使學生了解利用計算器可以求出任意一個正數(shù)的算術(shù)平方根,再通過一些特殊的例子找出一些數(shù)的算術(shù)平方根的規(guī)律,最后讓學生感受算術(shù)平方根在實際生活中的應(yīng)用。情感態(tài)度與價值觀:通過探究的大小,培養(yǎng)學生的估算意識,了解兩個方向無限逼近的數(shù)學思想,并且鍛煉學生克服困難的意志,建立自信心,提高學習熱情。教學重點:認識無限不循環(huán)小數(shù)的特點,會估算一些數(shù)的算術(shù)平方根。會用算術(shù)平方根的知識解決實際問題。教學難點:認識無限不循環(huán)小數(shù)的特點,會估算一些數(shù)的算術(shù)平方根。教學方法: 自主探究、啟發(fā)引導、小組合作教學過程: 一、通過實驗引入:怎樣用兩個面積為1的小正方形拼成一個面積為2的大正方形?如圖,把兩個小正方形沿對角線剪開,將所得的4個直角三角形拼在一起,就得到一個面積為2的大正方形。你知道這個大正方形的邊長是多少嗎?設(shè)大正方形的邊長為,則,由算術(shù)平方根的意義可知,所以大正方形的邊長為。二、討論的大?。河缮厦娴膶嶒炍覀冋J識了,它的大小是多少呢?它所表示的數(shù)有什么特征呢?下面我們討論的大小。因為,所以.因為,所以。因為,所以因為,所以如此進行下去,我們發(fā)現(xiàn)它的小數(shù)位數(shù)無限,且小數(shù)部分不循環(huán),像這樣的數(shù)我們成為無限不循環(huán)小數(shù)。=注:這種估算體現(xiàn)了兩個方向向中間無限逼近的數(shù)學思想,學生第一次接觸,不好理解,教師在講解時速度要放慢,可能需要講兩遍。=,是個無限不循環(huán)小數(shù),但是很抽象,沒有辦法全部表示出來它的大小,類似這樣的數(shù)還有很多,比如等,圓周率也是一個無限不循環(huán)小數(shù)。三、用計算器求算術(shù)平方根:大多數(shù)計算器都有“”鍵,用它可以求出一個有理數(shù)的算術(shù)平方根或近似值。例1、 用計算器求下列各式的值:; (精確到解:(1)依次按鍵,顯示:56.所以(2)依次按鍵2=,顯示:,這是一個近似值。所以注:不同品牌的計算器,按鍵的順序可能有所不同。四、探索規(guī)律:(1)利用計算器計算,并將計算結(jié)果填在表中,你發(fā)現(xiàn)了什么規(guī)律?(2)用計算器計算(結(jié)果保留4個有效數(shù)字),并利用你發(fā)現(xiàn)的規(guī)律寫出, ,的近似值。你能根據(jù)的值求出的值嗎?學生通過計算器可求出(1)的答案,依次是:。從運算結(jié)果可以發(fā)現(xiàn),被開方數(shù)擴大或縮小100倍時,它的算術(shù)平方根就擴大或縮小10倍。由可得,由的值不能求出的值,因為規(guī)律是被開方數(shù)擴大或縮小100倍時,它的算術(shù)平方根才擴大或縮小10倍,而3到30擴大的是10倍,所以不能由此規(guī)律求出。此題學生可獨立完成。五、實際應(yīng)用:例1、小麗想用一塊面積為的正方形紙片,沿著邊的方向裁出一塊面積為的長方形紙片,使它的長與寬之比為:,不知道能否裁出來,正在發(fā)愁,小明見了說:“別發(fā)愁,一定能用一塊面積大的紙片裁出一塊面積小的紙片?!蹦阃庑∶鞯恼f法嗎?小麗能否用這塊紙片裁出符合要求的紙片嗎?分析:學生一般認為一定能用一塊面積大的紙片裁出一塊面積小的紙片。通過計算和講解糾正這種錯誤的認識。解:設(shè)長方形紙片的長為,寬為。根據(jù)邊長與面積的關(guān)系可得:,長方形紙片的長為。因為,所以,從而即長方形紙片的長應(yīng)該大于,而已知正方形紙片的邊長只有,這樣長方形紙片的長將大于正方形紙片的邊長。答:不能同意小明的說法。小麗不能用這塊正方形紙片裁出符合要求的長方形紙片。六、隨堂練習:1.用計算器求下列各式的值:(1) (2) (3) (精確到)2、估計大?。海?)與 (2)與3、已知,求,的值。七、課堂小結(jié)1、被開方數(shù)增大或縮小時,其相應(yīng)的算術(shù)平方根也相應(yīng)地增大或縮小,因此我們可以利用夾值的方法來求出算術(shù)平方根的近似值;2、利用計算器可以求出任意正數(shù)的算術(shù)平方根的近似值;3、被開方數(shù)擴大(或縮?。┡c它的算術(shù)平方根擴大(或縮小)的規(guī)律是怎樣的呢?4、怎樣的數(shù)是無限不循環(huán)小數(shù)?八、布置作業(yè)課本第47頁習題6.1第5、6題教學反思:本節(jié)課首先提出“有多大”的問題,這是一個學生關(guān)注的具有挑戰(zhàn)性的問題,也是說明引入算術(shù)平方根必要性的好問題(如果算術(shù)平方根都可以像完全平方數(shù)的算術(shù)平方根那樣求得,恐怕就沒有必要花那么多的精力來學習算術(shù)平方根了),所以教學中要引起重視解決這個問

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論