




已閱讀5頁,還剩11頁未讀, 繼續(xù)免費(fèi)閱讀
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
CO-ENERGY (AGAIN)In the linear case, energy and co-energy are numerically equal.the value of distinguishing between them may not be obvious.Why bother with co-energy at all?EXAMPLE: SOLENOID WITH MAGNETIC SATURATION. Previous solenoid constitutive equations assumedelectromagnetic linearity.arbitrarily large magnetic fluxes could be generated.In reality flux cannot exceed saturation flux.For sufficiently high currents behavior is strongly nonlinear.Solenoid & co-energypage 1 Neville HoganMODEL THAT PHENOMENON.Assume an electrical constitutive equation as follows:where L(x) is position-dependent inductance as before.For sufficiently small currents the relation is approximately linear.For sufficiently large currents the flux linkage reachesa limiting value, s.Solenoid & co-energypage 2 Neville HoganMECHANICAL CONSTITUTIVE EQUATIONmay be found using the stored energy.Find the stored energy at a fixed displacement.Find force as the gradient with respect to displacement.That yields the relation between force and flux linkage.F = F(, x)But flux cannot be specified arbitrarily.Realistic boundary conditions require current input.To find the relation between force and current, substitute.= (i, x)Solenoid & co-energypage 3 Neville HoganSTORED ELECTRICAL ENERGY(at a fixed displacement)Need to invert the relation between flux linkage and current.In general, anything but straightforward.In this case, a little algebra yields the following.USE WITH CAUTION!If s this expression yields an imaginary number for the current.Solenoid & co-energypage 4 Neville HoganA LITTLE CALCULUS(and some more algebra) yields an expression for energy.Partial derivative with respect to displacement: ls2 l 2Substitute for flux linkage:Still more algebra simplifies this expression:Solenoid & co-energypage 5 Neville HoganCOMMENT:The assumed electrical constitutive equationwas chosen primarily for pedagogic simplicitya more realistic relation may be (far) less tractableusually no simple algebraic form existsConsequently a procedure requiring(a) inversion(b) integration with respect to flux linkage and(c) differentiation with respect to displacement may be impractical.Solenoid & co-energypage 6 Neville HoganAN ALTERNATIVE APPROACH:use co-energy instead of energy. Total stored energy:Electrical co-energy: (a Legendre transformation with respect to current) Force is the negative gradient of this co-energy.Solenoid & co-energypage 7 Neville HoganElectrical co-energy at a fixed displacement: KEY POINT:Co-energy may be found without inverting therelation between flux linkage and current.Partial differentiation with respect to displacement: No further algebra required.Solenoid & co-energypage 8 Neville HoganREMARKSIn general, co-energy functions are useful formultiport and/or nonlinear energy storage elements.Inverting constitutive equations may be avoided.In the linear case, energy and co-energy are numerically equal.the value of distinguishing between them may not be obvious.In the nonlinear case, the two are not equal. Distinguishing between them is important.In this example,energy is upper-bounded co-energy is not.In general,energy is conservedco-energy need not be.Solenoid & co-energypage 9 Neville HoganNOTE 1:* Integration to find energy:where y is a “dummy variable”.rearrange:substitution: defineSolenoid & co-energypage 10 Neville HoganDoes that make sense?In the limit as approaches sSolenoid & co-energypage 11 Neville HoganPlausible; implies that only a finite amount of energy maybe stored.In the limit as approaches 0, binomial series expansionof the root yields higher order termsas expected for a linear inductor.Solenoid & co-energypage 12 Neville HoganNOTE 2:* Integration to find co-energy:Does this make sense?In the limit asL(x) i sE* s iThis is the area of a rectangle of sides i and s. Note thatco-energy may increase without bound, whereas energy may not.In the limit asSolenoid & co-energypage 13 Neville HoganL(x) i sseries expansion of the square root + higherorder termsas expected for a linear inductor.Solenoid & co-energypage 14 Neville HoganNOTE 3:*Partial differentiation with respect to displacement:Solenoid & co-energypage 15 Neville
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 智能安全防護(hù)網(wǎng)升級服務(wù)行業(yè)深度調(diào)研及發(fā)展戰(zhàn)略咨詢報告
- 智能眼鏡顯示設(shè)備行業(yè)深度調(diào)研及發(fā)展戰(zhàn)略咨詢報告
- 工程管理建筑材料管理案例分析題
- 安全生產(chǎn)綜合知識考試試卷與答案
- 安全生產(chǎn)綜合知識復(fù)審測試題與答案
- 工業(yè)互聯(lián)網(wǎng)平臺賦能下2025年生物識別技術(shù)解決方案報告
- 美容院美容師聘用合同書
- 汽車維修行業(yè)工時費(fèi)與責(zé)任豁免合同書
- 安全生產(chǎn)月競賽溫習(xí)考卷以及答案
- 現(xiàn)代企業(yè)管理方法與工具考試指導(dǎo)題集
- 美術(shù)合作協(xié)議書合同模板
- 2025年江蘇省蘇州市昆山八校聯(lián)考中考零模英語試題(原卷版+解析版)
- 生物技術(shù)與生物醫(yī)藥產(chǎn)業(yè)發(fā)展趨勢分析
- 2025年中小學(xué)生五一勞動節(jié)假期安全主題班會課件
- 中國海洋石油集團(tuán)有限公司招聘筆試真題2024
- DBJ-T13-200-2025 福建省樁基礎(chǔ)與地下結(jié)構(gòu)防腐蝕技術(shù)標(biāo)準(zhǔn)
- 汾西礦業(yè)考試試題及答案
- 2025年教育法規(guī)試題庫及答案
- (完整)高一生物必修1一二單元測試題
- 山東省菏澤市2025年高三一??荚囉⒄Z試題(含答案)
- 男裝商場商品知識培訓(xùn)
評論
0/150
提交評論