大跨結(jié)構(gòu)第四章何.doc_第1頁
大跨結(jié)構(gòu)第四章何.doc_第2頁
大跨結(jié)構(gòu)第四章何.doc_第3頁
大跨結(jié)構(gòu)第四章何.doc_第4頁
大跨結(jié)構(gòu)第四章何.doc_第5頁
已閱讀5頁,還剩23頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

第二篇 大跨結(jié)構(gòu)第四章 懸掛系統(tǒng)結(jié)構(gòu)設(shè)計(jì)第一節(jié) 概述一、定義懸掛系統(tǒng):當(dāng)結(jié)構(gòu)系統(tǒng)中的主要承重構(gòu)件是懸索時(shí),就形成懸掛系統(tǒng)。二、受力特點(diǎn)及優(yōu)點(diǎn)1、簡(jiǎn)單受拉,不存在壓桿 ,所以材料強(qiáng)度可以充分發(fā)揮。2、假設(shè)簡(jiǎn)單,符合實(shí)際情況。3、施工中不必有跨中支撐。4、結(jié)構(gòu)內(nèi)力與荷載之間關(guān)系是非線性的(幾何非線性)。第二節(jié) 單索計(jì)算理論一、索的平衡方程基本假設(shè):1、索理想柔性,不能受壓、受彎2、索材料符合胡克定律分布荷載: ,索曲線: z=z(x); 當(dāng)=0時(shí),幾種豎向荷載情形:1、 豎向荷載沿跨度均布積分得: (拋物線)邊界條件:時(shí), 時(shí), 這里H是未知的,所以上式代表一簇曲線,通過A、B點(diǎn)。必須有一個(gè)條件限定H 值。例如:設(shè)曲線跨中垂度,時(shí),第一項(xiàng)以AB為基礎(chǔ)的索曲線第二項(xiàng)AB線當(dāng)AB等高時(shí),當(dāng)索曲線確定后,各點(diǎn)拉力當(dāng)索較平坦時(shí), 引上例:在支點(diǎn)處最大:當(dāng)垂跨比給定后,可求得任一點(diǎn)內(nèi)力。2、 荷載沿索長(zhǎng)均布代入 積分:其中 與第一情況同,設(shè)定垂跨比,可得內(nèi)力3、任意分布梁的平衡方程:如果邊界條件相同,有如下對(duì)等關(guān)系:相當(dāng)邊界條件:支座等高的懸索懸索: 梁左端:Z=0 左:M=0右端:Z=0 右:M=0兩支座不等高懸索: 梁左端:Z=0 左:M=0右端:Z=C 右:M=HC索曲線與簡(jiǎn)支梁的彎矩圖相似二、索長(zhǎng)度計(jì)算按級(jí)數(shù)展開: 三、索的變形協(xié)調(diào)方程1、 的提出索的初始狀態(tài):初始荷載初始形狀初始拉力由荷載增量, 如何求出“終態(tài)”的內(nèi)力和位移方法;已知Z的形狀只要確定,Z、H即可。一個(gè)平衡方程不夠 2、變形協(xié)調(diào)方程平衡方程只是給出q、z、H的關(guān)系,卻無法描述過程,所以從“初態(tài)”到“終態(tài)”,要用變形協(xié)調(diào)方程來確定。假設(shè):過程中,支座位移 溫度變化長(zhǎng)度伸長(zhǎng):小垂度,保留微量第一項(xiàng)展開。由物理方程:由內(nèi)力增量和溫度引起的這就是變形協(xié)調(diào)方程。 四、單索問題解法 設(shè)索的初始狀態(tài)荷載,索曲線、初始內(nèi)力已知。 (a)加荷載后, (b) (c)聯(lián)立(a)(b)(c)三式,先由(a)(c)得:代入(b) 令:上式是以H為未知量的三次方程,可得H,再求得(由(c)式)注:H的方程是幾何非線性不同初始狀態(tài),施加相同荷載,效應(yīng)不同。解上式時(shí),支座位移和溫度變化t要首先給定,而支座位移大小往往和拉力H有關(guān),所以要與支承結(jié)構(gòu)剛度方程聯(lián)立求解。例:?jiǎn)嗡鞯腍值求解過程,受均布荷載,初始狀態(tài)(均布)和已經(jīng)給定,為一拋物線且跨中垂度也已確定。終態(tài)時(shí)的q也已給定。則:、可得出,代入H可得。特例:不考慮支座位移和溫度變化均布載荷時(shí),始、終態(tài)下索曲線長(zhǎng)度:(可見,與支座高差c無關(guān))所得變形協(xié)調(diào)方程為:平衡方程為: 代入上式:求解此方程用迭代法。例題1 已知:要求索內(nèi)張力H及初始時(shí)的垂度。代數(shù)值入迭代后例題2初態(tài)為直線時(shí),其它數(shù)據(jù)同上,此時(shí)方程為以上是以H為未知量進(jìn)行推導(dǎo),得出H的三次方程,也可以用索的豎向位移w為未知量,將、H代入?yún)f(xié)調(diào)方程。是一個(gè)的三次方程求出后,由得以上例為例,代入上式中,迭代 與上題同。第三節(jié) 雙層索系計(jì)算一、定義由一系列承重索和相反曲率的穩(wěn)定索組成。每對(duì)承重索和穩(wěn)定索一般位于同一豎平面內(nèi),二者通過受拉鋼索或受壓撐桿連系,構(gòu)成猶如屋架形式的平面體系,常稱為索桁架。穩(wěn)定索的作用1)抵抗風(fēng)吸力作用2)由于存在預(yù)張力,穩(wěn)定索能同承重索一起承重,提高整個(gè)體系剛度。二、 構(gòu)造及造型1)采用輕屋面,如鐵皮,石棉板2)承重索垂度一般取跨度的1/171/20穩(wěn)定索的拱度1/201/253)承重、穩(wěn)定索可不在一個(gè)平面內(nèi),構(gòu)成波形屋面,排水好4)雙層索也常用于圓形建筑平面,沿輻射方向布置三、平面雙層索系(索桁架)的基本方程:假定:(1)索是理想柔性,符合胡克定律 (2)承重索、穩(wěn)定索之間連系桿絕對(duì)剛性,即兩根索豎向位移相同。 (3)連系桿分布較密,認(rèn)為是連續(xù)分布的 (4)只討論小垂度?,且僅考慮豎向荷載作用。平面雙向索系分為兩種(按受力特點(diǎn)分)(1)兩索只有豎向聯(lián)結(jié),水平方向,兩索在任意點(diǎn)可自由相對(duì)錯(cuò)動(dòng)。(2)兩索中央點(diǎn)聯(lián)在一起,不能有豎向、水平方向相對(duì)錯(cuò)動(dòng)。1、索中點(diǎn)不相連結(jié)的情況:A)可自由錯(cuò)動(dòng) B)不可自由錯(cuò)動(dòng)初始狀態(tài):承重索和穩(wěn)定索已加預(yù)應(yīng)力張拉繃緊,但體系尚未承受外載作用。已知:Z1、Z2兩根索的形狀,預(yù)拉應(yīng)力值、。式中為上下索之間連系桿的內(nèi)力,上兩式相加:和形狀相似,具有相同的函數(shù)形式。當(dāng)荷載施加為時(shí),豎向位移,水平張力增到、,連系桿內(nèi)力由,則上下桿平衡條件及變形條件:聯(lián)立四個(gè)方程,可求出、四個(gè)未知量。 2、 索中點(diǎn)相互連結(jié)的情形:這種情形受力比較復(fù)雜,因?yàn)樯?、下索中點(diǎn)可以相互傳遞水平力,所以每根索的兩邊的水平張力一般都不相同,這樣就有四個(gè)未知力。、(角標(biāo)1、指左半部分2、指由半部分) 當(dāng)體系不對(duì)稱時(shí),中央結(jié)點(diǎn)C要產(chǎn)生水平位移 這時(shí)應(yīng)分別建立左右兩部分的平衡、變形協(xié)調(diào)方程。 平衡方程為:變形協(xié)調(diào)方程為:七個(gè)方程,解、七個(gè)未知量。二、均布荷載下的雙層索系已知: 均布荷載,左右不對(duì)稱,以下表示:、分別代表荷載對(duì)稱,反對(duì)稱部分承重索和穩(wěn)定索的初始形狀取為拋物線式中、是待定常數(shù),時(shí)取+號(hào) x0時(shí)取號(hào)第一項(xiàng)表示對(duì)稱的拋物線,第二項(xiàng)是反對(duì)稱的兩個(gè)半波拋物線。1、 索中點(diǎn)相連的情形將上式代入變形協(xié)調(diào)方程:左右索的水平張力增量(由妥協(xié)方程得出)代入上式;得中央結(jié)點(diǎn)水平位移;代回 中,利用平衡方程的轉(zhuǎn)換:表達(dá)式為以、為未知量的方程(二元三次)2、索中點(diǎn)不相連的情形:令代入上一種情況即可。三、車輻式雙層索系的計(jì)算組成:外環(huán)(受壓、做成? ) 內(nèi)環(huán)(受拉 鋼結(jié)構(gòu))輻射鋼索假定:內(nèi)外環(huán)是剛體,只是產(chǎn)生剛體位移思路:內(nèi)環(huán)重心處三個(gè)線位移u、v、w 繞三個(gè)坐標(biāo)軸轉(zhuǎn)角x、y、z六個(gè)位移分量是已知,則可求得各索的內(nèi)力(1)當(dāng)z是微量,可省略。(2)荷載有一個(gè)對(duì)稱軸時(shí),只有u、v、w三個(gè)方程。(3)荷載有兩個(gè)對(duì)稱軸時(shí),只有w(位移)方程。討論范圍:極對(duì)稱情形,取一對(duì)上、下索進(jìn)行分析,索內(nèi)預(yù)拉力的水平分量H10和H20必須符合下列關(guān)系:折算到一對(duì)剛索上的內(nèi)環(huán)重量加載以后,內(nèi)環(huán)產(chǎn)生一豎向位移w,上索變?yōu)榍€上索內(nèi)力方程: 下索內(nèi)力:內(nèi)索豎向平衡:荷載引起簡(jiǎn)支梁反力聯(lián)立上三式:解、 、第四章 大跨鋼結(jié)構(gòu)第一節(jié) 平面結(jié)構(gòu)一、 梁式體系的特點(diǎn)、用途(一)1、梁式屋蓋的布置: 2、屋架形式a) 跨小b) 跨大(二)框架式體系的特點(diǎn)及用途1、用途及布置用途:工業(yè)建筑中,橫梁高度小,剛度較大布置:橫梁框架 縱向框架 縱橫雙向框架(1)橫向框架布置跨度小于60m時(shí),框架間距68m。跨度大于60m時(shí),間距增大1012m。或兩端間距68m,中間跨度增大,便于?(2)縱向框架布置縱向框架跨度小,經(jīng)濟(jì)。可設(shè)懸挑,適用于機(jī)庫(kù)。(3)雙向框架布置框架雙向布置屋蓋有主檁條、檁條組成2、框架型式(1)實(shí)腹式(跨5060m的車站、展覽館、車庫(kù),制造安裝方便)橫梁高度 L/12L/20,費(fèi)材料,所以設(shè)拉桿,施加預(yù)應(yīng)力,從而降低橫梁高度,取L/30L/40。(2)格構(gòu)式:跨度60120m,用雙鉸式框架; 跨度120150m,用無鉸式框架。三、預(yù)應(yīng)力鋼結(jié)構(gòu)在大跨結(jié)構(gòu)中的應(yīng)用1、預(yù)應(yīng)力構(gòu)件的承載力基本計(jì)算公式基本構(gòu)件強(qiáng)度:穩(wěn)定:高強(qiáng)度鋼構(gòu)件強(qiáng)度:初始應(yīng)力;加預(yù)應(yīng)力前,構(gòu)件中部分荷載引起的應(yīng)力預(yù)應(yīng)力,加預(yù)應(yīng)力時(shí)的應(yīng)力續(xù)加應(yīng)力,加預(yù)應(yīng)力后,構(gòu)件中續(xù)加荷載所引起的應(yīng)力、C、K分別代表構(gòu)件的凈應(yīng)力,考慮穩(wěn)定時(shí)構(gòu)件應(yīng)力,高強(qiáng)度鋼構(gòu)件應(yīng)力、設(shè)計(jì)強(qiáng)度穩(wěn)定系數(shù)2、預(yù)應(yīng)力拉桿的計(jì)算(1)兩階段設(shè)計(jì)法預(yù)應(yīng)力階段預(yù)內(nèi)力值截面積穩(wěn)定系數(shù)荷載階段其中 N荷載引起的桿力構(gòu)件凈截面高強(qiáng)度預(yù)應(yīng)力筋面積彈性模量預(yù)應(yīng)力筋模量高強(qiáng)度鋼構(gòu)件強(qiáng)度:其中:(2)按三階段設(shè)計(jì)法1)初始荷載階段2)預(yù)應(yīng)力階段必要時(shí),設(shè)隔提高預(yù)應(yīng)力,臨界力可提高倍3)續(xù)加荷載階段第二節(jié) 網(wǎng)架結(jié)構(gòu)一、網(wǎng)架結(jié)構(gòu)的特點(diǎn)和適用范圍1、定義:網(wǎng)架結(jié)構(gòu)是由很多桿件從二個(gè)兩幾個(gè)方向有規(guī)律地組成的高次超靜定結(jié)構(gòu)。2、特點(diǎn):(1)能承受各個(gè)方向荷載(2)整體性好,空間剛度大(3)體系穩(wěn)定(4)抗震性能好(5)利用小規(guī)格的桿件建成大跨結(jié)構(gòu)(6)自重輕,節(jié)約鋼材(7)適用工業(yè)化生產(chǎn)(8)適應(yīng)性好,大、中、小跨皆可,可構(gòu)成各種形狀(圓、扇、矩形)二、平板網(wǎng)架結(jié)構(gòu)的形式、種類和特點(diǎn):平板網(wǎng)架交叉桁架體系:由平行弦的桁架組成,構(gòu)件多,剛度大空間桁架體系:有錐體形成的空間桁架組成,桿件少,剛度小按支承情況單跨:四點(diǎn)支承、多點(diǎn)支承、多邊支承多跨(一)交叉平面桁架體系分類:兩組桁架交叉梁系 三組桁架三向交叉梁系1、兩向交叉梁系網(wǎng)架有兩組平面桁架相互交叉組成。a) 正交正放 b)正交斜放正交正放:桿力大,不經(jīng)濟(jì)正交斜放:跨中彎矩小,經(jīng)濟(jì)適用于跨度不大于60m2、三向交叉梁系網(wǎng)架由三組平面桁架互成60相互交叉組成,上、下弦平面內(nèi)均為幾何不變的三角形。特點(diǎn):1、 剛度大2、 內(nèi)力分布均勻3、 傳力均勻4、桿件多,匯交于一個(gè)節(jié)點(diǎn)的桿件多(最多13根,一般10根)適用于跨度大的結(jié)構(gòu)L60m(二)交叉空間桁架體系:空間桁架都由錐體組成。四角錐體 三角錐體六角錐體1、四角錐體網(wǎng)架上弦桿正交組成方格,下弦桿平移半格,弦桿與邊界正交。特點(diǎn):(1)上弦桿短,下弦桿長(zhǎng),受力合理(2)下弦節(jié)點(diǎn)為八桿匯集,上弦節(jié)點(diǎn)為六桿匯集,構(gòu)造簡(jiǎn)單。2、三角錐體網(wǎng)架:有三角錐組成,上下弦在本身平面內(nèi)都組成正三角形網(wǎng)格,下弦三角形的節(jié)點(diǎn)正對(duì)上弦三角形的重心。特點(diǎn):(1)抗彎、扭好,受力均勻。(2)節(jié)點(diǎn)復(fù)雜,上、下弦桿節(jié)點(diǎn)為九桿匯集。(3)適用于平面為矩形、三角形、六邊形、圓形、梯形平面三、平板網(wǎng)架內(nèi)力分析(矩陣位移法)思路:(1)網(wǎng)架離散為單桿,建立單桿的桿端力和桿端位移的關(guān)系方程(2)根據(jù)力的平衡,建立各節(jié)點(diǎn)的平衡方程(3)以節(jié)點(diǎn)位移為未知數(shù),解除位移再確定內(nèi)力設(shè)空間網(wǎng)架節(jié)點(diǎn)n,共有3n個(gè)未知量,要有3n個(gè)方程。步驟:1、列出網(wǎng)架中每一個(gè)桿件的單元?jiǎng)偠染仃囉?,可得:寫成矩陣:化為:坐?biāo)變換矩陣、軸對(duì)x、y、z的方向余弦、

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論