高考數(shù)學(xué)總復(fù)習(xí) 32利用導(dǎo)數(shù)研究函數(shù)的性質(zhì) 新人教B版.doc_第1頁(yè)
高考數(shù)學(xué)總復(fù)習(xí) 32利用導(dǎo)數(shù)研究函數(shù)的性質(zhì) 新人教B版.doc_第2頁(yè)
高考數(shù)學(xué)總復(fù)習(xí) 32利用導(dǎo)數(shù)研究函數(shù)的性質(zhì) 新人教B版.doc_第3頁(yè)
高考數(shù)學(xué)總復(fù)習(xí) 32利用導(dǎo)數(shù)研究函數(shù)的性質(zhì) 新人教B版.doc_第4頁(yè)
高考數(shù)學(xué)總復(fù)習(xí) 32利用導(dǎo)數(shù)研究函數(shù)的性質(zhì) 新人教B版.doc_第5頁(yè)
已閱讀5頁(yè),還剩13頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

3-2利用導(dǎo)數(shù)研究函數(shù)的性質(zhì)基礎(chǔ)鞏固強(qiáng)化1.(2012湖南衡陽(yáng)模擬)函數(shù)f(x)xa在x1,4上單調(diào)遞減,則實(shí)數(shù)a的最小值為()a1b2c4d5答案c解析當(dāng)x1,4時(shí),f (x)10,a2恒成立,a4.2(文)(2012陜西理,7)設(shè)函數(shù)f(x)xex,則()ax1為f(x)的極大值點(diǎn)bx1為f(x)的極小值點(diǎn)cx1為f(x)的極大值點(diǎn)dx1為f(x)的極小值點(diǎn)答案d解析本題考查了導(dǎo)數(shù)的應(yīng)用求函數(shù)的極值f (x)exxex,令f (x)0,exxex0,x1,當(dāng)x(,1)時(shí),f (x)exxex0,x1為極小值點(diǎn),故選d.點(diǎn)評(píng)求函數(shù)的極值要討論在各區(qū)間內(nèi)導(dǎo)函數(shù)值的符號(hào),同時(shí)要注意函數(shù)的定義域(理)已知函數(shù)f(x)x3px2qx的圖象與x軸切于(1,0)點(diǎn),則f(x)的極大值、極小值分別為()a.,0 b0,c,0 d0,答案a解析f (x)3x22pxq,由f (1)0,f(1)0得,解得f(x)x32x2x,由f (x)3x24x10得x或x1,易得當(dāng)x時(shí)f(x)取極大值,當(dāng)x1時(shí)f(x)取極小值0.3(文)函數(shù)f(x)的定義域?yàn)殚_(kāi)區(qū)間(a,b),導(dǎo)函數(shù)f (x)在(a,b)內(nèi)的圖象如圖所示,則函數(shù)f(x)在(a,b)內(nèi)的極大值點(diǎn)有()a1個(gè) b2個(gè)c3個(gè) d4個(gè)答案b解析由導(dǎo)函數(shù)的圖象知,f(x)在(a,b)內(nèi)變化情況為增減增減,故有兩個(gè)極大值點(diǎn)(理)(2012重慶理,8)設(shè)函數(shù)f(x)在r上可導(dǎo),其導(dǎo)函數(shù)為f (x),且函數(shù)y(1x)f (x)的圖象如下圖所示,則下列結(jié)論中一定成立的是()a函數(shù)f(x)有極大值f(2)和極小值f(1)b函數(shù)f(x)有極大值f(2)和極小值f(1)c函數(shù)f(x)有極大值f(2)和極小值f(2)d函數(shù)f(x)有極大值f(2)和極小值f(2)答案d解析當(dāng)x3,則f (x)0;當(dāng)2x1時(shí),01x3,則f (x)0;函數(shù)f(x)有極大值f(2),當(dāng)1x2時(shí),11x0,則f (x)2時(shí),1x0,函數(shù)f(x)有極小值f(2),故選d.4(文)(2011遼寧文,11)函數(shù)f(x)的定義域?yàn)閞,f(1)2,對(duì)任意xr,f (x)2,則f(x)2x4的解集為()a(1,1) b(1,)c(,1) d(,)答案b解析由題意,令(x)f(x)2x4,則(x)f (x)20.(x)在r上是增函數(shù)又(1)f(1)2(1)40,當(dāng)x1時(shí),(x)(1)0,f(x)2x40,f(x)2x4.故選b.(理)(2012河南省洛陽(yáng)市高三年級(jí)統(tǒng)一考試)函數(shù)f(x)的定義域是r,f(0)2,對(duì)任意xr,f(x)f (x)1,則不等式exf(x)ex1的解集為()ax|x0 bx|x0cx|x1 dx|x1,或0xexex0,所以g(x)exf(x)ex為r上的增函數(shù)又g(0)e0f(0)e01,所以原不等式轉(zhuǎn)化為g(x)g(0),解得x0.5(文)已知函數(shù)f(x)的導(dǎo)函數(shù)f (x)的圖象如圖所示,那么函數(shù)f(x)的圖象最有可能的是()答案a解析由圖可知,當(dāng)x0時(shí),f (x)0,函數(shù)f(x)的圖象在(0,)上是單調(diào)遞減的;當(dāng)x2時(shí),f (x)0,0,0),其導(dǎo)函數(shù)f (x)的部分圖象如圖所示,則函數(shù)f(x)的解析式為()af(x)4sinbf(x)2sincf(x)2sindf(x)4sin答案a解析f (x)acos(x),由f (x)的圖象知,a2,設(shè)周期為t,則2,t4,a4,f (x)的圖象過(guò)點(diǎn),2cos0,k,kz,即k,kz,0,.故選a.6若函數(shù)f(x)x312x在區(qū)間(k1,k1)上不是單調(diào)函數(shù),則實(shí)數(shù)k的取值范圍是()ak3或1k1或k3b3k1或1k3c2k0得函數(shù)的增區(qū)間是(,2)和(2,),由y0,得函數(shù)的減區(qū)間是(2,2),由于函數(shù)在(k1,k1)上不是單調(diào)函數(shù),所以有k12k1或k12k1,解得3k1或1k3,故選b.點(diǎn)評(píng)已知函數(shù)f(x),由f (x)的符號(hào)可得到函數(shù)f(x)的單調(diào)區(qū)間,而f(x)在區(qū)間(k1,k1)上不單調(diào),因此,k1與k1應(yīng)分布在函數(shù)f(x)的兩個(gè)單調(diào)區(qū)間內(nèi)請(qǐng)?jiān)倬毩?xí)下題:已知函數(shù)f(x)x3kx在區(qū)間(3,1)上不單調(diào),則實(shí)數(shù)k的取值范圍是_答案3k0,得x2,若k0,則f(x)顯然在(3,1)上單調(diào)遞增,k0,x或x.由3x2k0得x,f(x)在上單調(diào)遞增,在(,)上單調(diào)遞減,在上單調(diào)遞增,由題設(shè)條件知31,3k27.7(2011福州模擬)已知f(x)2x36x2m(m為常數(shù))在2,2上有最大值為3,那么此函數(shù)在2,2上的最小值為_(kāi)答案37解析f (x)6x212x,由f (x)0得x0或x2,當(dāng)x2時(shí),f (x)0,當(dāng)0x2時(shí),f (x)0,f(x)在2,0上單調(diào)增,在0,2上單調(diào)減,由條件知f(0)m3,f(2)5,f(2)37,最小值為37.8(2011蘇北四市調(diào)研)已知函數(shù)f(x)mx3nx2的圖象在點(diǎn)(1,2)處的切線恰好與直線3xy0平行,若f(x)在區(qū)間t,t1上單調(diào)遞減,則實(shí)數(shù)t的取值范圍是_答案2,1解析由題意知,點(diǎn)(1,2)在函數(shù)f(x)的圖象上,故mn2又f (x)3mx22nx,由條件知f (1)3,故3m2n3聯(lián)立解得:m1,n3,即f(x)x33x2,令f (x)3x26x0,解得2x0,則t,t12,0,故t2且t10,所以t2,1點(diǎn)評(píng)f(x)在區(qū)間t,t1上單調(diào)遞減,故t,t1是f(x)的減區(qū)間的子集9(2012湖南長(zhǎng)郡中學(xué)一模)已知函數(shù)f(x)的導(dǎo)函數(shù)為f (x)5cosx,x(1,1),且f(0)0,如果f(1x)f(1x2)0,則實(shí)數(shù)x的取值范圍為_(kāi)答案(1,)解析導(dǎo)函數(shù)是偶函數(shù),原函數(shù)f(x)是奇函數(shù),且定義域?yàn)?1,1),又由導(dǎo)數(shù)值恒大于0,原函數(shù)在定義域上單調(diào)遞增,所求不等式變形為f(1x)f(x21),11xx211,解得1x0時(shí),x(,0)0(0,)(,)y00y增函數(shù)極大值減函數(shù)極小值增函數(shù)所以當(dāng)x0時(shí),y取得極大值b,當(dāng)x時(shí),y取得極小值ba,同理當(dāng)a0時(shí),f(x)在2,0)上單調(diào)遞增,在(0,1上單調(diào)遞減,所以f(x)maxf(0)b5.又f(2)b16af(1)ba,所以b16a11,a1.當(dāng)af(1)ba,所以b16a5,a1.綜上,f(x)x32x25或f(x)x32x211.能力拓展提升11.(文)(2011南開(kāi)區(qū)質(zhì)檢)已知實(shí)數(shù)a、b、c、d成等比數(shù)列,且曲線y3xx3的極大值點(diǎn)坐標(biāo)為(b,c),則ad等于()a2 b1c1 d2答案a解析a、b、c、d成等比數(shù)列,adbc,又(b,c)為函數(shù)y3xx3的極大值點(diǎn),c3bb3,且033b2,或ad2.(理)(2011陜西咸陽(yáng)模擬)已知函數(shù)f(x)ax21的圖象在點(diǎn)a(1,f(1)處的切線l與直線8xy20平行,若數(shù)列的前n項(xiàng)和為sn,則s2010的值為()a. b.c. d.答案d解析f (x)2ax,f(x)在點(diǎn)a處的切線斜率為f (1)2a,由條件知2a8,a4,f(x)4x21,數(shù)列的前n項(xiàng)和sn,s2010.12(文)(2012淄博一檢)已知alnx對(duì)任意x,2恒成立,則a的最大值為()a0 b1 c2 d3答案a解析令f(x)lnx,則f (x),當(dāng)x,1時(shí),f (x)0,f(x)在,1上單調(diào)遞減,在1,2上單調(diào)遞增,f(x)minf(1)0,a0,故選a.(理)(2012濰坊模擬)已知非零向量a、b滿(mǎn)足|a|b|,若函數(shù)f(x)x3|a|x22abx1在r上有極值,則a,b的取值范圍是()a0, b(0,c(, d(,答案d解析據(jù)題意知,f (x)x22|a|x2ab,若函數(shù)存在極值,必有(2|a|)242ab0,整理可得|a|22ab,故cosa,b,解得a,b.13(2012深圳第一次調(diào)研)已知函數(shù)f(x)的導(dǎo)函數(shù)f (x)ax2bxc的圖象如圖所示,則f(x)的圖象可能是()答案d解析當(dāng)x0時(shí),由導(dǎo)函數(shù)f (x)ax2bxc0時(shí),由導(dǎo)函數(shù)f (x)ax2bxc的圖象可知,導(dǎo)數(shù)在區(qū)間(0,x1)內(nèi)的值是大于0的,則在此區(qū)間內(nèi)函數(shù)f(x)單調(diào)遞增只有d選項(xiàng)符合題意14(文)已知yf(x)是奇函數(shù),當(dāng)x(0,2)時(shí),f(x)lnxax(a),當(dāng)x(2,0)時(shí),f(x)的最小值為1,則a的值為_(kāi)答案1解析因?yàn)閒(x)是奇函數(shù),所以f(x)在(0,2)上的最大值為1,當(dāng)x(0,2)時(shí),f (x)a,令f (x)0得x,又a,所以00得x,f(x)在(0,)上單調(diào)遞增;令f (x),f(x)在(,2)上單調(diào)遞減;所以當(dāng)x(0,2)時(shí),f(x)maxf()lna1,所以ln0,所以a1.(理)(2011安慶質(zhì)檢)已知函數(shù)f(x)x3ax24在x2處取得極值,若m、n1,1,則f(m)f (n)的最小值是_答案13解析求導(dǎo)得f (x)3x22ax,由函數(shù)f(x)在x2處取得極值知f (2)0,即342a20,a3.由此可得f(x)x33x24,f (x)3x26x,易知f(x)在(1,0)上單調(diào)遞減,在(0,1)上單調(diào)遞增,當(dāng)m1,1時(shí),f(m)minf(0)4.又f (x)3x26x的圖象開(kāi)口向下,且對(duì)稱(chēng)軸為x1,當(dāng)n1,1時(shí),f (n)minf (1)9.故f(m)f (n)的最小值為13.15(文)設(shè)函數(shù)f(x)x33axb(a0)(1)若曲線yf(x)在點(diǎn)(2,f(2)處與直線y8相切,求a、b的值;(2)求函數(shù)f(x)的單調(diào)區(qū)間與極值點(diǎn)解析(1)f (x)3x23a.因?yàn)榍€yf(x)在點(diǎn)(2,f(2)處與直線y8相切,所以即解得a4,b24.(2)f (x)3(x2a)(a0)當(dāng)a0,函數(shù)f(x)在(,)上單調(diào)遞增;此時(shí)函數(shù)f(x)沒(méi)有極值點(diǎn)當(dāng)a0時(shí),由f (x)0得x.當(dāng)x(,)時(shí),f (x)0,函數(shù)f(x)單調(diào)遞增;當(dāng)x(,)時(shí),f (x)0,函數(shù)f(x)單調(diào)遞增f(x)的單調(diào)增區(qū)間為(,)和(,),單調(diào)減區(qū)間為(,)故x是f(x)的極大值點(diǎn),x是f(x)的極小值點(diǎn)(理)(2012新課標(biāo)全國(guó)文,21)設(shè)函數(shù)f(x)exax2.(1)求f(x)的單調(diào)區(qū)間;(2)若a1,k為整數(shù),且當(dāng)x0時(shí),(xk)f (x)x10,求k的最大值分析(1)先確定函數(shù)的定義域,然后求導(dǎo)函數(shù)f (x),因不確定a的正負(fù),故應(yīng)討論,結(jié)合a的正負(fù)分別得出在每一種情況下f (x)的正負(fù),從而確立單調(diào)區(qū)間;(2)分離參數(shù)k,將不含有參數(shù)的式子看作一個(gè)新函數(shù)g(x),將求k的最大值轉(zhuǎn)化為求g(x)的最值問(wèn)題解析(1)f(x)的定義域?yàn)?,),f (x)exa.若a0,則f (x)0,所以f(x)在(,)單調(diào)遞增若a0,則當(dāng)x(,lna)時(shí),f (x)0,所以,f(x)在(,lna)單調(diào)遞減,在(lna,)單調(diào)遞增(2)由于a1,所以(xk)f (x)x1(xk)(ex1)x1.故當(dāng)x0時(shí),(xk)f (x)x10等價(jià)于k0)令g(x)x,則g(x)1.由(1)知,函數(shù)h(x)exx2在(0,)上單調(diào)遞增而h(1)0,所以h(x)在(0,)上存在唯一的零點(diǎn)故g(x)在(0,)上存在唯一的零點(diǎn)設(shè)此零點(diǎn)為,則(1,2)當(dāng)x(0,)時(shí),g(x)0.所以g(x)在(0,)的最小值為g()又由g()0,可得e2,所以g()1(2,3)由于式等價(jià)于kg(),故整數(shù)k的最大值為2.16(文)(2013唐山一中第一學(xué)期第二次月考)已知函數(shù)f(x)alnxax3(ar)(1)若a1,求函數(shù)f(x)的單調(diào)區(qū)間并比較f(x)與f(1)的大小關(guān)系;(2)若函數(shù)yf(x)的圖象在點(diǎn)(2,f(2)處的切線的傾斜角為45,對(duì)于任意的t1,2,函數(shù)g(x)x3x2f (x)在區(qū)間(t,3)上總不是單調(diào)函數(shù),求m的取值范圍;(3)求證:0),由f (x)0得x1;由f (x)0得0x0),tan451,f (2)1,得a2,f(x)2lnx2x3,g(x)x3(2)x22x,g (x)3x2(m4)x2.g(x)在區(qū)間(t,3)上總不是單調(diào)函數(shù),且g (0)2,由題意知:對(duì)于任意的t1,2,g(t)0恒成立,所以,mf(1),即lnxx10,0lnxx1對(duì)一切x(1,)成立n2,nn*,則有0lnnn1,0,0,g(x)0單調(diào)遞增區(qū)間,f (x)0單調(diào)遞減區(qū)間(3)易得g(x)(1xxlnx),直接對(duì)g(x)求導(dǎo),研究其在(0,)上的單調(diào)性,進(jìn)而求極值、最值,證g(x)max0(g(x)0)思路受阻受(2)的啟發(fā),研究h(x)1xxlnx,利用x(0,)時(shí)0;當(dāng)x(1,)時(shí),h(x)0,所以x(0,1)時(shí),f (x)0;x(1,)時(shí),f (x)0,函數(shù)h(x)單調(diào)遞增;當(dāng)x(e2,)時(shí),h(x)0,函數(shù)h(x)單調(diào)遞減所以當(dāng)x(0,)時(shí),h(x)h(e2)1e2.又當(dāng)x(0,)時(shí),01,所以當(dāng)x(0,)時(shí),h(x)1e2,即g(x)1e2.綜上所述結(jié)論成立點(diǎn)評(píng)本題考查了導(dǎo)數(shù)的運(yùn)算、切線方程、利用導(dǎo)數(shù)研究函數(shù)的極值、研究函數(shù)的單調(diào)區(qū)間、利用導(dǎo)數(shù)證明不等式等1若函數(shù)f(x)x36bx3b在(0,1)內(nèi)有極小值,則實(shí)數(shù)b的取值范圍是()a(0,1) b(,1)c(0,) d.答案d解析f (x)3x26b,由題意知,函數(shù)f (x)圖象如右圖0b0,b0,且函數(shù)f(x)4x3ax22bx2在x1處有極值,則ab的最大值等于()a2 b3c6 d9答案d解析f (x)12x22ax2b0的一根為x1,即122a2b0.ab6,ab()29,當(dāng)且僅當(dāng)ab3時(shí)“”號(hào)成立3f(x)是定義在(0,)上的非負(fù)可導(dǎo)函數(shù),且滿(mǎn)足xf (x)f(x)0.對(duì)任意正數(shù)a、b,若ab,則必有()aaf(b)bf(a) bbf(a)af(b)caf(a)f(b) dbf(b)f(a)答案a解析xf (x)f(x)0,又f(x)0,xf (x)f(x)0.設(shè)y,則y0,故y為減函數(shù)或?yàn)槌?shù)函數(shù)又a0,af(b)bf(a)點(diǎn)評(píng)觀察條件式xf (x)f(x)0的特點(diǎn),可見(jiàn)不等式左邊是函數(shù)yxf(x)的導(dǎo)函數(shù),故可構(gòu)造函數(shù)yxf(x)或y通過(guò)取導(dǎo)數(shù)利用條件式來(lái)得到函數(shù)的單調(diào)性推得結(jié)論,請(qǐng)?jiān)倬毩?xí)下題:已知a、b是實(shí)數(shù),且eabababe時(shí),f (x)0,f(x)在(e,)上單調(diào)遞減eaf(b),即,blnaalnb,lnablnba,abba.4設(shè)函數(shù)f(x)是r上以5為周期的可導(dǎo)偶函數(shù),則曲線yf(x)在x5處的切線的斜率為()

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論