




已閱讀5頁,還剩10頁未讀, 繼續(xù)免費(fèi)閱讀
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
一元一次不等式 七年級(jí)數(shù)學(xué) 滬科版 下冊(cè) 學(xué)習(xí)目標(biāo) 1 理解 一元一次不等式 不等式的解 不等式的解集 解不等式 等概念 2 會(huì)解一元一次不等式 并會(huì)在數(shù)軸上表示不等式的解集 一 情境導(dǎo)入 問題某公司規(guī)定 員工每加班1小時(shí) 工資就增加20元 某員工月基本工資4000元 如果他的月工資想達(dá)到5000元 那么他本月加班時(shí)間要等于多少小時(shí) 變形某公司規(guī)定 員工每加班1小時(shí) 工資就增加20元 某員工月基本工資4000元 如果他的月工資想超過5000元 那么他本月加班時(shí)間要高于多少小時(shí) 思考1 你能解決這一問題嗎 你用的是什么方法 思考2 若把題中的 達(dá)到 改為 超過 等于 改為 高于 你還會(huì)嗎 解 設(shè)員工加班時(shí)間為x小時(shí) 那么工資增加20X元 根據(jù)題意得 4000 20 x 5000 4000 20 x 5000 方程 這是不等式 認(rèn)真閱讀課本第28 31面內(nèi)容 解決以下問題 1 了解 一元一次不等式的概念 不等式的解與解集的意義 知道 解和解集的區(qū)別 2 怎樣把不等式的解集在數(shù)軸上表示出來 3 試一試解不等式 2x 4 7 2 x 并在數(shù)軸上表示它的解集 二 自主學(xué)習(xí) 三 合作探究 一 一元一次不等式的意義 思考3 能否類比你所列的兩個(gè)式子各具有什么特征 定義 只含有一個(gè)未知數(shù) 未知數(shù)的次數(shù)是1 且不等號(hào)兩邊都是整式的不等式叫做一元一次不等式 4000 20 x 5000 4000 20 x 5000 觀察下列不等式 一元一次不等式 中的兩個(gè) 一 分別是什么意思 這些都是一元一次不等式嗎 為什么 三 合作探究 4 5 二 不等式的解與解集 思考4 對(duì)于一元一次不等式4000 20 x 5000 使它成立的未知數(shù)x的值是多少 1 判斷下列給出的數(shù)中 哪些能使不等式4000 20 x 5000成立 50 5 24 5 55 5 72 10 2 你還能找出使上述不等式成立有其它的數(shù)嗎 能找多少個(gè) 歸納 通過以上的思考 得到 大于50的任何一個(gè)實(shí)數(shù) 如72 50 5等 都能使不等式4000 20 x 5000成立 三 合作探究 不等式的解 一般地 能夠使不等式成立的未知數(shù)的值 叫做這個(gè)不等式的解 所有這些解的全體稱為這個(gè)不等式的解的集合 簡(jiǎn)稱解集 解不等式 求不等式的解集的過程叫做解不等式 思考6 類比方程的解和不等式的解 你發(fā)現(xiàn)它們的異同點(diǎn)了嗎 都是使兩邊成立 一元一次方程的解是唯一的 而一元一次不等式的解不唯一 思考5 你能類比一元一次方程的解的概念 猜想出一元一次不等式的解的概念嗎 方程的解 一般地 能夠使方程成立的未知數(shù)的值 叫做這個(gè)方程的解 解方程 求方程的解的過程叫做解方程 三 合作探究 二 不等式的解與解集 三 解一元一次不等式 自主探索 同桌的兩位同學(xué)一個(gè)解方程 另一個(gè)類比解方程的方法解不等式然后交流 討論 思考7 你能類比一元一次方程4000 20 x 5000的解法 研究出一元一次不等式4000 20 x 5000的解法嗎 解方程4000 20 x 5000 解 移項(xiàng)得 20 x 5000 4000合并同類項(xiàng)得 20 x 1000系數(shù)化為1得 x 50 解不等式 4000 20 x 5000 解 移項(xiàng)得 20 x 5000 4000合并同類項(xiàng)得 20 x 1000系數(shù)化為1得 x 50 三 合作探究 四 新知應(yīng)用 例1 解不等式 2x 4 7 2 x 解 去括號(hào) 得 2x 4 14 7x 移項(xiàng) 得 2x 7x 14 4 合并同類項(xiàng) 得 5x 10 系數(shù)化為1 得 x 2 再如x 20可表示成 大于向右畫 小于向左畫 有等號(hào)的畫實(shí)心點(diǎn) 無等號(hào)的畫空心圈 不等式的解集可以在數(shù)軸上直觀地表示出來 如x 2則可用數(shù)軸上表示 2的點(diǎn)以及 2左邊所有點(diǎn)來表示 注意 系數(shù)化為1時(shí) 不等號(hào)的方向問題 x 2 X 2與X 2有什么不同 在數(shù)軸上表示它們時(shí)怎樣區(qū)別 2不包括在內(nèi)就畫空心圓圈 2包括在內(nèi)就畫實(shí)心圓點(diǎn) 四 新知應(yīng)用 例2 解不等式并把它的解集表示在數(shù)軸上 解 合并同類項(xiàng) 得 x 2 系數(shù)化為1 得 這個(gè)不等式的解集在數(shù)軸上表示如下 解方程的移項(xiàng)變形對(duì)于解不等式同樣適用 去括號(hào) 得 8 2x 6 3x 移項(xiàng) 得 2x 3x 6 8 X 2 1012 注意哦 不等式X 2包括2 在數(shù)軸上把表示2的點(diǎn)畫成實(shí)心點(diǎn) 去分母 得 2 4 x 6 3x 1 解下列不等式 并在數(shù)軸上表示它們的解集 1 2x 8 2 12 2x 3 2x 3 3 5x 4 7x 1 4 2x 5 2 5x 2 解下列不等式 1 3 1 x x 8 2 思考8 從上面的例題和練習(xí)來看 解一元一次不等式與解一元一次方程有什么相同和不同的地方 為什么 五 學(xué)以致用 1 去分母 2 去括號(hào) 3 移項(xiàng) 4 合并同類項(xiàng) 5 系數(shù)化為1 1 去分母 2 去括號(hào) 3 移項(xiàng) 4 合并同類項(xiàng) 5 系數(shù)化為1 在 1 與 5
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 遼寧政法職業(yè)學(xué)院《中國語言文學(xué)經(jīng)典文獻(xiàn)導(dǎo)讀》2023-2024學(xué)年第一學(xué)期期末試卷
- 臨夏現(xiàn)代職業(yè)學(xué)院《圖像分析與處理》2023-2024學(xué)年第二學(xué)期期末試卷
- 天津音樂學(xué)院《商務(wù)英語談判》2023-2024學(xué)年第一學(xué)期期末試卷
- 2025年語言學(xué)與外語教育考試試題及答案
- 2025年注冊(cè)建筑師職業(yè)資格考試試卷及答案
- 2025年中級(jí)工程師考試試題及答案
- 2025年圖書館與信息學(xué)考試試題及答案
- 2025年職業(yè)健康安全管理考試試題及答案
- 四川幼兒師范高等專科學(xué)?!豆こ炭刂苹A(chǔ)》2023-2024學(xué)年第二學(xué)期期末試卷
- 江西省新余市第六中學(xué)2025屆5月高三模擬試卷含解析
- 2025年北京市西城區(qū)高三二模語文試卷(含答案)
- 玉石代理銷售合同協(xié)議
- (二模)2025年汕頭市高三普通高考第二次模擬考試英語試卷(含答案)
- 山東2025年山東省公共衛(wèi)生臨床中心招聘博士人才60筆試歷年參考題庫附帶答案詳解
- 2024年臺(tái)州市委統(tǒng)戰(zhàn)部下屬事業(yè)單位選聘筆試真題
- 強(qiáng)基計(jì)劃個(gè)人陳述范文南京大學(xué)
- 16G362 鋼筋混凝土結(jié)構(gòu)預(yù)埋件
- 土石方測(cè)量方案完整版
- 律師事務(wù)所勞動(dòng)合同范本2(律師助理和實(shí)習(xí)律師參照適用
- 施工單位動(dòng)火申請(qǐng)書內(nèi)容
- 焊條電弧焊基礎(chǔ)知識(shí)二
評(píng)論
0/150
提交評(píng)論