如何去寫好一份數(shù)學(xué)教案.doc_第1頁
如何去寫好一份數(shù)學(xué)教案.doc_第2頁
如何去寫好一份數(shù)學(xué)教案.doc_第3頁
如何去寫好一份數(shù)學(xué)教案.doc_第4頁
如何去寫好一份數(shù)學(xué)教案.doc_第5頁
已閱讀5頁,還剩290頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

如何去寫好一份數(shù)學(xué)教案教案必須做到重點(diǎn)突出,難點(diǎn)突破,必須做到層次分明,過渡自然。要體現(xiàn)課改新理念就必須改進(jìn)備課方法,要備好一節(jié)課,編寫一份高質(zhì)量的教案,除了研究課程標(biāo)準(zhǔn)、學(xué)生、教科書之外,還要做好備課的其他工作,探討備課的基本工作,以便最終形成一份完整的教案。初中數(shù)學(xué)教案包括:新課程改革后的數(shù)學(xué)教案是各有各的特點(diǎn),我們實(shí)行的“學(xué)案導(dǎo)學(xué)”教學(xué)法,學(xué)案包括以下幾塊:1、學(xué)習(xí)目標(biāo)(包括重、難點(diǎn));2、知識(shí)鏈接(復(fù)習(xí)和本節(jié)課有關(guān)的已有知識(shí)點(diǎn));3、課堂探究:分自主學(xué)習(xí)、合作研討、展示講解、歸納總結(jié)四步;4、鞏固提升;5、隨堂檢測(cè)。6、教學(xué)反思以全等三角形為例第十一章 全等三角形 單元要點(diǎn)分析 教學(xué)內(nèi)容 本章的主要內(nèi)容是全等三角形主要學(xué)習(xí)全等三角形的性質(zhì)以及探索判定三角形全等的方法,并學(xué)會(huì)怎樣應(yīng)用全等三角形進(jìn)行證明,本章劃分為三個(gè)小節(jié),第一節(jié)學(xué)習(xí)三角形全等的概念、性質(zhì);第二節(jié)學(xué)習(xí)三角形全等的判定方法和直角三角形全等的特殊判定方法;第三節(jié)利用三角形全等證明角的平分線的性質(zhì),會(huì)利用角的平分線的性質(zhì)進(jìn)行證明 教材分析 教材力求創(chuàng)設(shè)現(xiàn)實(shí)、有趣的問題情境,使學(xué)生經(jīng)歷從現(xiàn)實(shí)活動(dòng)中抽象出幾何模型和運(yùn)用所學(xué)內(nèi)容解決實(shí)際問題的過程在內(nèi)容呈現(xiàn)上,把研究三角形全等條件的重點(diǎn)放在第一個(gè)條件上,通過“邊邊邊”條件探索什么是三角形的判定,如何判定,怎樣進(jìn)行推理論證,怎樣正確地表達(dá)證明過程學(xué)生開始學(xué)習(xí)三角形判定定理時(shí)的困難在于定理的證明,而這些推理證明并不要求學(xué)生掌握為了突出判定方法這條主渠道,教材都作為基本事實(shí)提出來,在畫圖、實(shí)驗(yàn)中讓學(xué)生知道它們的正確性就可以了在“角的平分線的性質(zhì)”一節(jié)中的兩個(gè)互逆定理,只要求學(xué)生了解其條件與結(jié)論之間的關(guān)系,不必介紹互逆命題、互逆定理等內(nèi)容,這將在“勾股定理”中介紹 三維目標(biāo) 1知識(shí)與技能 在探索全等三角形的性質(zhì)與判定中,提高認(rèn)知水平,積累數(shù)學(xué)活動(dòng)經(jīng)驗(yàn) 2過程與方法 經(jīng)歷探索三角形全等的判定的,發(fā)展空間觀念和有條理的表達(dá)能力,掌握兩個(gè)三角形全等的判定并應(yīng)用于實(shí)際之中 3情感、態(tài)度與價(jià)值觀 培養(yǎng)良好的觀察、操作、想象、推理能力,感悟幾何學(xué)的內(nèi)涵 重、難點(diǎn)與關(guān)鍵 1重點(diǎn):使學(xué)生理解證明的基本過程,掌握用綜合法證明的格式 2難點(diǎn):領(lǐng)會(huì)證明的分析思路,學(xué)會(huì)運(yùn)用綜合法證明的格式 3關(guān)鍵:突出三角形全等的判定方法這條主線,淡化對(duì)定理的證明 教學(xué)建議 1注意使學(xué)生經(jīng)歷探索三角形性質(zhì)及三角形全等的判定的過程在教學(xué)中鼓勵(lì)學(xué)生觀察、操作、推理,運(yùn)用多種方式探索三角形有關(guān)性質(zhì) 2注重創(chuàng)設(shè)具有現(xiàn)實(shí)性、趣味性和挑戰(zhàn)性的情境,體現(xiàn)三角形的廣泛應(yīng)用 3注意直觀操作與說理的結(jié)合,逐步培養(yǎng)學(xué)生有條理的思考和表達(dá) 課時(shí)劃分 本單元共分成9課時(shí) 111 全等三角形 1課時(shí) 112 三角形全等的性質(zhì) 5課時(shí) 113 角的平分線的性質(zhì) 2課時(shí) 復(fù)習(xí)與交流 1課時(shí) 11.1 全等三角形 教學(xué)內(nèi)容 本節(jié)課主要介紹全等三角形的概念和性質(zhì) 教學(xué)目標(biāo) 1知識(shí)與技能 領(lǐng)會(huì)全等三角形對(duì)應(yīng)邊和對(duì)應(yīng)角相等的有關(guān)概念 2過程與方法 經(jīng)歷探索全等三角形性質(zhì)的過程,能在全等三角形中正確找出對(duì)應(yīng)邊、對(duì)應(yīng)角 3情感、態(tài)度與價(jià)值觀 培養(yǎng)觀察、操作、分析能力,體會(huì)全等三角形的應(yīng)用價(jià)值 重、難點(diǎn)與關(guān)鍵 1重點(diǎn):會(huì)確定全等三角形的對(duì)應(yīng)元素 2難點(diǎn):掌握找對(duì)應(yīng)邊、對(duì)應(yīng)角的方法 3關(guān)鍵:找對(duì)應(yīng)邊、對(duì)應(yīng)角有下面兩種方法:(1)全等三角形對(duì)應(yīng)角所對(duì)的邊是對(duì)應(yīng)邊,兩個(gè)對(duì)應(yīng)角所夾的邊是對(duì)應(yīng)邊;(2)對(duì)應(yīng)邊所對(duì)的角是對(duì)應(yīng)角,兩條對(duì)應(yīng)邊所夾的角是對(duì)應(yīng)角 教具準(zhǔn)備 四張大小一樣的紙片、直尺、剪刀 教學(xué)方法 采用“直觀感悟”的教學(xué)方法,讓學(xué)生自己舉出形狀、大小相同的實(shí)例,加深認(rèn)識(shí) 教學(xué)過程 一、動(dòng)手操作,導(dǎo)入課題 1先在其中一張紙上畫出任意一個(gè)多邊形,再用剪刀剪下,思考得到的圖形有何特點(diǎn)? 2重新在一張紙板上畫出任意一個(gè)三角形,再用剪刀剪下,思考得到的圖形有何特點(diǎn)? 【學(xué)生活動(dòng)】動(dòng)手操作、用腦思考、與同伴討論,得出結(jié)論 【教師活動(dòng)】指導(dǎo)學(xué)生用剪刀剪出重疊的兩個(gè)多邊形和三角形 學(xué)生在操作過程中,教師要讓學(xué)生事先在紙上畫出三角形,然后固定重疊的兩張紙,注意整個(gè)過程要細(xì)心 【互動(dòng)交流】剪出的多邊形和三角形,可以看出:形狀、大小相同,能夠完全重合這樣的兩個(gè)圖形叫做全等形,用“”表示 概念:能夠完全重合的兩個(gè)三角形叫做全等三角形 【教師活動(dòng)】在紙版上任意剪下一個(gè)三角形,要求學(xué)生手拿一個(gè)三角形,做如下運(yùn)動(dòng):平移、翻折、旋轉(zhuǎn),觀察其運(yùn)動(dòng)前后的三角形會(huì)全等嗎? 【學(xué)生活動(dòng)】動(dòng)手操作,實(shí)踐感知,得出結(jié)論:兩個(gè)三角形全等 【教師活動(dòng)】要求學(xué)生用字母表示出每個(gè)剪下的三角形,同時(shí)互相指出每個(gè)三角形的頂點(diǎn)、三個(gè)角、三條邊、每條邊的邊角、每個(gè)角的對(duì)邊 【學(xué)生活動(dòng)】把兩個(gè)三角形按上述要求標(biāo)上字母,并任意放置,與同桌交流:(1)何時(shí)能完全重在一起?(2)此時(shí)它們的頂點(diǎn)、邊、角有何特點(diǎn)? 【交流討論】通過同桌交流,實(shí)驗(yàn)得出下面結(jié)論: 1任意放置時(shí),并不一定完全重合,只有當(dāng)把相同的角旋轉(zhuǎn)到一起時(shí)才能完全重合 2這時(shí)它們的三個(gè)頂點(diǎn)、三條邊和三個(gè)內(nèi)角分別重合了 3完全重合說明三條邊對(duì)應(yīng)相等,三個(gè)內(nèi)角對(duì)應(yīng)相等,對(duì)應(yīng)頂點(diǎn)在相對(duì)應(yīng)的位置 【教師活動(dòng)】根據(jù)學(xué)生交流的情況,給予補(bǔ)充和語言上的規(guī)范 1概念:把兩個(gè)全等的三角形重合到一起,重合的頂點(diǎn)叫做對(duì)應(yīng)頂點(diǎn),重合的邊叫做對(duì)應(yīng)邊,重合的角叫做對(duì)應(yīng)角2證兩個(gè)三角形全等時(shí),通常把表示對(duì)應(yīng)頂點(diǎn)的字母寫在對(duì)應(yīng)的位置上,如果本圖1112ABC和DBC全等,點(diǎn)A和點(diǎn)D,點(diǎn)B和點(diǎn)B,點(diǎn)C和點(diǎn)C是對(duì)應(yīng)頂點(diǎn),記作ABCDBC【問題提出】課本圖1111中,ABCDEF,對(duì)應(yīng)邊有什么關(guān)系?對(duì)應(yīng)角呢? 【學(xué)生活動(dòng)】經(jīng)過觀察得到下面性質(zhì): 1全等三角形對(duì)應(yīng)邊相等; 2全等三角形對(duì)應(yīng)角相等 二、隨堂練習(xí),鞏固深化 課本P4練習(xí) 【探研時(shí)空】1如圖1所示,ACFDBE,E=F,若AD=20cm,BC=8cm,你能求出線段AB的長(zhǎng)嗎?與同伴交流(AB=6) 2如圖2所示,ABCAEC,B=30,ACB=85,求出AEC各內(nèi)角的度數(shù)(AEC=30,EAC=65,ECA=85) 三、課堂總結(jié),發(fā)展?jié)撃?1什么叫做全等三角形? 2全等三角形具有哪些性質(zhì)? 四、布置作業(yè),專題突破 1課本P4習(xí)題111第1,2,3,4題 2選用課時(shí)作業(yè)設(shè)計(jì) 板書設(shè)計(jì) 把黑板分成左、中、右三部分,左邊板書本節(jié)課概念,中間部分板書“思考”中的問題,右邊部分板書學(xué)生的練習(xí) 疑難解析 由于兩個(gè)三角形的位置關(guān)系不同,在找對(duì)應(yīng)邊、對(duì)應(yīng)角時(shí),可以針對(duì)兩個(gè)三角形不同的位置關(guān)系,尋找對(duì)應(yīng)邊、角的規(guī)律:(1)有公共邊的,公共邊一定是對(duì)應(yīng)邊;(2)有公共角的,公共角一定是對(duì)應(yīng)角;(3)有對(duì)頂角的,對(duì)頂角一定是對(duì)應(yīng)角;兩個(gè)全等三角形中一對(duì)最長(zhǎng)的邊(或最大的角)是對(duì)應(yīng)邊(或角),一對(duì)最短的邊(或最小的角)是對(duì)應(yīng)邊(或角) 課時(shí)作業(yè)設(shè)計(jì)一、填空題1如圖3所示,AOCBOD,A和B,C和D是對(duì)應(yīng)角,那么對(duì)應(yīng)邊CO=_,AO=_,AC=_,對(duì)應(yīng)角COA=_ 2如圖4所示,把ABC繞A點(diǎn)旋轉(zhuǎn)一定角度,得到ADE,那么對(duì)應(yīng)邊AB=_,AC=_,DE=_,對(duì)應(yīng)角BAC=_,B=_3已知ABCDEF,AB=5,BC=4,AC=3,C=90,則DEF中,最小的邊長(zhǎng)為_,最大的角為_度二、選擇題4如果ABCDEF,DEF的周長(zhǎng)為13,DE=3,EF=4,則AC的長(zhǎng)( ) A13 B3 C4 D65已知ABCABC,A=80,B=40,那么C的度數(shù)為( ) A80 B40 C60 D120三、解答題6如圖所示,ABCABC,C=25,BC=6cm,AC=4cm,你能得出ABC中哪些角的大小,哪些邊的長(zhǎng)度?7如圖所示,已知ABCDEF,則AB與DE,AC與DF的位置有什么關(guān)系?說說你的理由四、情境思索8如圖所示,一柵欄頂部是由全等的三角形組成的,其中AC=02m,BC=2AC,求BD的長(zhǎng)五、聚焦中考9如圖所示,將一副三角板疊放在一起,使直角的頂點(diǎn)重合于點(diǎn)O,則AOC+DOB的度數(shù)為多少度?六、課后反思課時(shí)作業(yè)設(shè)計(jì)答案:一、1DO BO BD DOB 2AD AE BC DAE D 33 90二、4D 5C三、6C=25 BC=6cm AC=4cm 7平行(理由略)四、8略五、918011.2.1三角形全等的判定(SSS) 教學(xué)內(nèi)容 本節(jié)課主要內(nèi)容是探索三角形全等的條件(SSS),及利用全等三角形進(jìn)行證明 教學(xué)目標(biāo) 1知識(shí)與技能 了解三角形的穩(wěn)定性,會(huì)應(yīng)用“邊邊邊”判定兩個(gè)三角形全等 2過程與方法 經(jīng)歷探索“邊邊邊”判定全等三角形的過程,解決簡(jiǎn)單的問題 3情感、態(tài)度與價(jià)值觀 培養(yǎng)有條理的思考和表達(dá)能力,形成良好的合作意識(shí) 重、難點(diǎn)與關(guān)鍵 1重點(diǎn):掌握“邊邊邊”判定兩個(gè)三角形全等的方法 2難點(diǎn):理解證明的基本過程,學(xué)會(huì)綜合分析法 3關(guān)鍵:掌握?qǐng)D形特征,尋找適合條件的兩個(gè)三角形 教具準(zhǔn)備一塊形狀如圖1所示的硬紙片,直尺,圓規(guī) (1) (2) 教學(xué)方法 采用“操作實(shí)驗(yàn)”的教學(xué)方法,讓學(xué)生親自動(dòng)手,形成直觀形象 教學(xué)過程 一、設(shè)疑求解,操作感知 【教師活動(dòng)】(出示教具) 問題提出:一塊三角形的玻璃損壞后,只剩下如圖2所示的殘片,你對(duì)圖中的殘片作哪些測(cè)量,就可以割取符合規(guī)格的三角形玻璃,與同伴交流【學(xué)生活動(dòng)】觀察,思考,回答教師的問題方法如下:可以將圖1的玻璃碎片放在一塊紙板上,然后用直尺和鉛筆或水筆畫出一塊完整的三角形如圖2,剪下模板就可去割玻璃了 【理論認(rèn)知】 如果ABCABC,那么它們的對(duì)應(yīng)邊相等,對(duì)應(yīng)角相等反之,如果ABC與ABC滿足三條邊對(duì)應(yīng)相等,三個(gè)角對(duì)應(yīng)相等,即AB=AB,BC=BC,CA=CA,A=A,B=B,C=C 這六個(gè)條件,就能保證ABCABC,從剛才的實(shí)踐我們可以發(fā)現(xiàn):只要兩個(gè)三角形三條對(duì)應(yīng)邊相等,就可以保證這兩塊三角形全等 信不信? 【作圖驗(yàn)證】(用直尺和圓規(guī)) 先任意畫出一個(gè)ABC,再畫一個(gè)ABC,使AB=AB,BC=BC,CA=CA把畫出的ABC剪下來,放在ABC上,它們能完全重合嗎?(即全等嗎)【學(xué)生活動(dòng)】拿出直尺和圓規(guī)按上面的要求作圖,并驗(yàn)證(如課本圖112-2所示) 畫一個(gè)ABC,使AB=AB,AC=AC,BC=BC: 1畫線段取BC=BC; 2分別以B、C為圓心,線段AB、AC為半徑畫弧,兩弧交于點(diǎn)A; 3連接線段AB、AC 【教師活動(dòng)】巡視、指導(dǎo),引入課題:“上述的生活實(shí)例和尺規(guī)作圖的結(jié)果反映了什么規(guī)律?” 【學(xué)生活動(dòng)】在思考、實(shí)踐的基礎(chǔ)上可以歸納出下面判定兩個(gè)三角形全等的定理 (1)判定方法:三邊對(duì)應(yīng)相等的兩個(gè)三角形全等(簡(jiǎn)寫成“邊邊邊”或“SSS”) (2)判斷兩個(gè)三角形全等的推理過程,叫做證明三角形全等 【評(píng)析】通過學(xué)生全過程的畫圖、觀察、比較、交流等,逐步探索出最后的結(jié)論邊邊邊,在這個(gè)過程中,學(xué)生不僅得到了兩個(gè)三角形全等的條件,同時(shí)增強(qiáng)了數(shù)學(xué)體驗(yàn) 二、范例點(diǎn)擊,應(yīng)用所學(xué)【例1】如課本圖1123所示,ABC是一個(gè)鋼架,AB=AC,AD是連接點(diǎn)A與BC中點(diǎn)D的支架,求證ABDACD(教師板書) 【教師活動(dòng)】分析例1,分析:要證明ABDACD,可看這兩個(gè)三角形的三條邊是否對(duì)應(yīng)相等 證明:D是BC的中點(diǎn), BD=CD在ABD和ACD中 ABDACD(SSS) 【評(píng)析】符號(hào)“”表示“因?yàn)椤?,“”表示“所以”;從?可以看出,證明是由題設(shè)(已知)出發(fā),經(jīng)過一步步的推理,最后推出結(jié)論(求證)正確的過程書寫中注意對(duì)應(yīng)頂點(diǎn)要寫在同一個(gè)位置上,哪個(gè)三角形先寫,哪個(gè)三角形的邊就先寫 三、實(shí)踐應(yīng)用,合作學(xué)習(xí) 【問題思考】已知AC=FE,BC=DE,點(diǎn)A、D、B、F在直線上,AD=FB(如圖所示),要用“邊邊邊”證明ABCFDE,除了已知中的AC=FE,BC=DE以外,還應(yīng)該有什么條件?怎樣才能得到這個(gè)條件? 【教師活動(dòng)】提出問題,巡視、引導(dǎo)學(xué)生,并請(qǐng)學(xué)生說說自己的想法 【學(xué)生活動(dòng)】先獨(dú)立思考后,再發(fā)言:“還應(yīng)該有AB=FD,只要AD=FB兩邊都加上DB即可得到AB=FD” 【教學(xué)形式】先獨(dú)立思考,再合作交流,師生互動(dòng) 四、隨堂練習(xí),鞏固深化 課本P8練習(xí) 【探研時(shí)空】如圖所示,AB=DF,AC=DE,BE=CF,BC與EF相等嗎?你能找到一對(duì)全等三角形嗎?說明你的理由(BC=EF,ABCDFE) 五、課堂總結(jié),發(fā)展?jié)撃?1全等三角形性質(zhì)是什么? 2正確地判斷出全等三角形的對(duì)應(yīng)邊、對(duì)應(yīng)角,利用全等三角形處理問題的基礎(chǔ),你是怎樣掌握判斷對(duì)應(yīng)邊、對(duì)應(yīng)角的方法? 3“邊邊邊”判定法告訴我們什么呢?(答:只要一個(gè)三角形三邊長(zhǎng)度確定了,則這個(gè)三角形的形狀大小就完全確定了,這就是三角形的穩(wěn)定性) 六、布置作業(yè),專題突破 1課本P15習(xí)題112第1,2題 2選用課時(shí)作業(yè)設(shè)計(jì) 板書設(shè)計(jì) 把黑板平均分成三份,左邊部分板書“邊邊邊”判定法,中間部分板書例題,右邊部分板書練習(xí) 疑難解析 證明中的每一步推理都要有根據(jù),不能“想當(dāng)然”,這些根據(jù),可以是已知條件,也可以是定義、公理、已學(xué)過的重要結(jié)論 第一課時(shí)作業(yè)設(shè)計(jì)1、證明題1已知:如圖,AD=BC,AB=DC,求證:A=C2已知:如圖,AB=EF,BC=FD,AD=EC,求證:B=F3如圖,已知AB=AC,AD=AE,BD=CE,你能運(yùn)用上面條件證明出幾對(duì)三角形全等?寫出你的證明過程2、問題探索 4操作并回答:取一長(zhǎng)方形紙片,用A、B、C、D表示其四個(gè)頂點(diǎn)將其折疊,使點(diǎn)D與點(diǎn)B重合(如圖)回答問題: (1)圖中有沒有全等形?如果有,請(qǐng)指出; (2)圖中的BEF與BFD雖然有公共邊,但卻不全等,試說明理由; (3)在圖中畫一條線段,使圖形中出現(xiàn)全等三角形,并寫出所出現(xiàn)的全等三角形(只畫一條線段,并且是連接圖中已用字母標(biāo)出的某兩個(gè)點(diǎn))六、課后反思作業(yè)設(shè)計(jì)答案:一、1提示:連接BD,證ABDCDB 2提示:證明ACBEDF 32對(duì)(證明略)二、4略11.2.2 三角形全等判定(SAS) 一、教學(xué)內(nèi)容 本節(jié)課主要內(nèi)容是探索三角形全等的條件(SAS),及利用全等三角形證明 二、 教學(xué)目標(biāo) 1知識(shí)與技能 領(lǐng)會(huì)“邊角邊”判定兩個(gè)三角形的方法 2過程與方法 經(jīng)歷探究三角形全等的判定方法的過程,學(xué)會(huì)解決簡(jiǎn)單的推理問題 3情感、態(tài)度與價(jià)值觀 培養(yǎng)合情推理能力,感悟三角形全等的應(yīng)用價(jià)值 三、重、難點(diǎn)及關(guān)鍵 1重點(diǎn):會(huì)用“邊角邊”證明兩個(gè)三角形全等 2難點(diǎn):應(yīng)用結(jié)合法的格式表達(dá)問題 3關(guān)鍵:在實(shí)踐、觀察中正確選擇判定三角形全等的方法 四、教具準(zhǔn)備 投影儀、直尺、圓規(guī) 教學(xué)方法 采用“操作實(shí)驗(yàn)”的教學(xué)方法,讓學(xué)生有一個(gè)直觀的感受 教學(xué)過程 (一)回顧交流,操作分析 【動(dòng)手畫圖】 【投影】作一個(gè)角等于已知角 【學(xué)生活動(dòng)】動(dòng)手用直尺、圓規(guī)畫圖 已知:AOB 求作:A1O1B1,使A1O1B1=AOB 【作法】(1)作射線O1A1;(2)以點(diǎn)O為圓心,以適當(dāng)長(zhǎng)為半徑畫弧,交OA于點(diǎn)C,交OB于點(diǎn)D;(3)以點(diǎn)O1為圓心,以O(shè)C長(zhǎng)為半徑畫弧,交O1A1于點(diǎn)C1;(4)以點(diǎn)C1為圓心,以CD長(zhǎng)為半徑畫弧,交前面的弧于點(diǎn)D1;(5)過點(diǎn)D1作射線O1B1,A1O1B1就是所求的角 【導(dǎo)入課題】 教師敘述:請(qǐng)同學(xué)們連接CD、C1D1,回憶作圖過程,分析COD和C1O1D1中相等的條件 【學(xué)生活動(dòng)】與同伴交流,發(fā)現(xiàn)下面的相等量: OD=O1D1,OC=O1C1,COD=C1O1D1,CODC1O1D1 歸納出規(guī)律: 兩邊和它們的夾角對(duì)應(yīng)相等的兩個(gè)三角形全等(簡(jiǎn)寫成“邊角邊”或“SAS”) 【評(píng)析】通過讓學(xué)生回憶基本作圖,在作圖過程中體會(huì)相等的條件,在直觀的操作過程中發(fā)現(xiàn)問題,獲得新知,使學(xué)生的知識(shí)承上啟下,開拓思維,發(fā)展探究新知的能力 【媒體使用】投影顯示作法 【教學(xué)形式】操作感知,互動(dòng)交流,形成共識(shí) (二)范例點(diǎn)擊,應(yīng)用新知【例2】如課本圖112-6所示有一池塘,要測(cè)池塘兩側(cè)A、B的距離,可先在平地上取一個(gè)可以直接到達(dá)A和B的點(diǎn),連接AC并延長(zhǎng)到D,使CD=CA,連接BC并延長(zhǎng)到E,使CE=CB,連接DE,那么量出DE的長(zhǎng)就是A、B的距離,為什么? 【教師活動(dòng)】操作投影儀,顯示例2,分析:如果能夠證明ABCDEC,就可以得出AB=DE在ABC和DEC中,CA=CD,CB=CE,如果能得出1=2,ABC和DEC就全等了證明:在ABC和DEC中 ABCDEC(SAS) AB=DE 想一想:1=2的依據(jù)是什么?(對(duì)頂角相等)AB=DE的依據(jù)是什么?(全等三角形對(duì)應(yīng)邊相等) 【學(xué)生活動(dòng)】參與教師的講例之中,領(lǐng)悟“邊角邊”證明三角形全等的方法,學(xué)會(huì)分析推理和規(guī)范書寫 【媒體使用】投影顯示例2 【教學(xué)形式】教師講例,學(xué)生接受式學(xué)習(xí)但要積極參與 【評(píng)析】證明分別屬于兩個(gè)三角形的線段相等或角相等的問題,常常通過證明這兩個(gè)三角形全等來解決 (三)辨析理解,正確掌握 【問題探究】(投影顯示) 我們知道,兩邊和它們的夾角對(duì)應(yīng)相等的兩個(gè)三角形全等,由“兩邊及其中一邊的對(duì)角對(duì)應(yīng)相等”的條件能判定兩個(gè)三角形全等嗎?為什么? 【教師活動(dòng)】拿出教具進(jìn)行示范,讓學(xué)生直觀地感受到問題的本質(zhì)操作教具:把一長(zhǎng)一短兩根細(xì)木棍的一端用螺釘鉸合在一起,使長(zhǎng)木棍的另一端與射線BC的端點(diǎn)B重合,適當(dāng)調(diào)整好長(zhǎng)木棍與射線BC所成的角后,固定住長(zhǎng)木棍,把短木棍擺起來(課本圖112-7),出現(xiàn)一個(gè)現(xiàn)象:ABC與ABD滿足兩邊及其中一邊對(duì)角相等的條件,但ABC與ABD不全等這說明,有兩邊和其中一邊的對(duì)角對(duì)應(yīng)相等的兩個(gè)三角形不一定全等【學(xué)生活動(dòng)】觀察教師操作教具、發(fā)現(xiàn)問題、辨析理解,動(dòng)手用直尺和圓規(guī)實(shí)驗(yàn)一次,做法如下:(如圖1所示) (1)畫ABT;(2)以A為圓心,以適當(dāng)長(zhǎng)為半徑,畫弧,交BT于C、C;(3)連線AC,AC,ABC與ABC不全等 【形成共識(shí)】“邊邊角”不能作為判定兩個(gè)三角形全等的條件 【教學(xué)形式】觀察、操作、感知,互動(dòng)交流 (四)隨堂練習(xí),鞏固深化 課本P10練習(xí)第1、2題 【探研時(shí)空】一位經(jīng)歷過戰(zhàn)爭(zhēng)的老人講述了這樣一個(gè)故事:(如圖2所示)在一次戰(zhàn)役中,我軍陣地與敵軍碉堡隔河相望為了炸掉這個(gè)碉堡,需要知道碉堡與我軍陣地的距離在不能過河測(cè)量又沒有任何測(cè)量工具的情況下,一個(gè)戰(zhàn)士想出來這樣一個(gè)辦法,他面向碉堡的方向站好,然后調(diào)整帽子,使視線通過帽檐正好落在碉堡的底部然后,他轉(zhuǎn)過一個(gè)角度,保持剛才的姿態(tài),這時(shí)視線落在了自己所在岸的某一點(diǎn)上接著,他用步測(cè)的辦法量出自己與那個(gè)點(diǎn)的距離,這個(gè)距離就是他與碉堡間的距離(如圖3所示) (1)按這個(gè)戰(zhàn)士的方法,找出教室或操場(chǎng)上與你距離相等的兩個(gè)點(diǎn),并通過測(cè)量加以驗(yàn)證 (2)你能解釋其中的道理嗎? 【思路點(diǎn)撥】情境中使用的方法在實(shí)際應(yīng)用中雖然是一種估測(cè),但用到的原理都是三角形全等(SAS);教學(xué)中,讓學(xué)生在教室里或操場(chǎng)上親自做一做,實(shí)際體驗(yàn) (五)課堂總結(jié),發(fā)展?jié)撃?1請(qǐng)你敘述“邊角邊”定理 2證明兩個(gè)三角形全等的思路是:首先分析條件,觀察已經(jīng)具備了什么條件;然后以已具備的條件為基礎(chǔ)根據(jù)全等三角形的判定方法,來確定還需要證明哪些邊或角對(duì)應(yīng)相等,再設(shè)法證明這些邊和角相等 (六)布置作業(yè),專題突破 1課本P15習(xí)題112第3、4題 2選用課時(shí)作業(yè)設(shè)計(jì) 板書設(shè)計(jì) 把黑板分成左、中、右三部分,其中右邊部分板書“邊角邊”判定法,中間部分板書例題,右邊部分板書練習(xí)題 疑難解析 現(xiàn)階段中的證明都比較簡(jiǎn)單,常遇到下列幾種情況:(1)利用中點(diǎn)定義證明線段相等;(2)利用垂直的定義證明角相等;(3)利用平行線的性質(zhì)證明角相等;(4)利用三角形的內(nèi)角和等于180證明角相等;(5)利用圖形的和、差證明邊或角相等第二課時(shí)作業(yè)設(shè)計(jì)1、填空題1如圖4,若AO=DO,只需補(bǔ)充_就可以根據(jù)SAS判定AOBDOC (4) (5) (6)2如圖5,已知AB=BD,則需要添加條件_,就可以根據(jù)SSS判定ABCDBC2、選擇題3如圖6,AB=CD,AD=BC,則圖中全等的三角形有( ) A4對(duì) B3對(duì) C2對(duì) D1對(duì)4如圖7,已知ABC中,BA=BC,BDAC于D,若C=40,則ABE為( ) (7)A40 B50 C80 D140 3、證明題5如圖8,點(diǎn)A,B,C,D在同一條直線上,EC=FD,AE=BF,AB=CD,你能證明AEBF,CEDF嗎?寫出推理過程6如圖9,已知AB=AC,AD=AE,1=2,你能證明出B=C嗎?與同伴交流4、探索題7如圖10,已知1=2,BA=BD,無論動(dòng)點(diǎn)P在BC上如何移動(dòng),都能得到PA=PD,你能說出這是為什么嗎?動(dòng)手試一試5、聚焦中考8如圖11,在正方形ABCD中,E是AD中點(diǎn),F(xiàn)是BA延長(zhǎng)線上一點(diǎn),AF=AB (1)求證:ABEADF (2)閱讀下面材料: 如圖12,把ABC沿直線BC平行移動(dòng)線段BC的長(zhǎng)度,可以變到ECD的位置 如圖13,以BC為軸把ABC翻折180,可以變到DBC的位置;如圖14,以點(diǎn)A為中心,把ABC旋軸180,可以變到AED的位置 (11) (12) (13) (14) 像這樣,其中一個(gè)三角形是由另一個(gè)三角形按平行移動(dòng),翻折、旋轉(zhuǎn)等方法變成的,這種只改變位置,不改變形狀大小的圖形變換,叫做三角形的全等變換 (3)回答下列問題: 在圖11中,可以通過平行移動(dòng),翻折、旋轉(zhuǎn)中的哪一種方法,使ABE變到ADF的位置? 指出圖11中線段BE與DF之間的關(guān)系(七)課后反思作業(yè)設(shè)計(jì)答案:一、1BO=CO 2AC=CD二、3A 4C三、5提示:證明AECBFD 6證明ABEACD四、7略五、8(1)AB=AD ADAB BAE=DAF=90 (2)AE=AD,AF=AB,AE=AF,ABEADF (3)ABE 繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90到ADF的位置 BE=DF11.2.3 三角形全等判定(ASA) 一、教學(xué)內(nèi)容 本節(jié)課主要內(nèi)容是探索三角形全等的判定(ASA,AAS),及利用全等三角形的證明 教學(xué)目標(biāo) 1知識(shí)與技能 理解“角邊角”、“角角邊”判定三角形全等的方法 2過程與方法 經(jīng)歷探索“角邊角”、“角角邊”判定三角形全等的過程,能運(yùn)用已學(xué)三角形判定法解決實(shí)際問題 3情感、態(tài)度與價(jià)值觀 培養(yǎng)良好的幾何推理意識(shí),發(fā)展思維,感悟全等三角形的應(yīng)用價(jià)值 二、重、難點(diǎn)與關(guān)鍵 1重點(diǎn):應(yīng)用“角邊角”、“角角邊”判定三角形全等 2難點(diǎn):學(xué)會(huì)綜合法解決幾何推理問題 3關(guān)鍵:把握綜合分析法的思想,尋找問題的切入點(diǎn) 三、 教具準(zhǔn)備 投影儀、幻燈片、直尺、圓規(guī) 教學(xué)方法 采用“問題教學(xué)法”在情境問題中,激發(fā)學(xué)生的求知欲 四、教學(xué)過程 (一)回顧交流,鞏固學(xué)習(xí) 【知識(shí)回顧】(投影顯示) 情境思考: 1小菁做了一個(gè)如圖1所示的風(fēng)箏,其中EDH=FDH,ED=FD,將上述條件注在圖中,小明不用測(cè)量就能知道EH=FH嗎?與同伴交流 (1) (2) 答案:能,因?yàn)楦鶕?jù)“SAS”,可以得到EDHFDH,從而EH=FH2如圖2,AB=AD,AC=AE,能添上一個(gè)條件證明出ABCADE嗎?答案:BC=DE(SSS)或BAC=DAE(SAS) 3如果兩邊及其中一邊的對(duì)角對(duì)應(yīng)相等,兩個(gè)三角形一定會(huì)全等嗎?試舉例說明 【教師活動(dòng)】操作投影儀,提出問題,組織學(xué)生思考和提問 【學(xué)生活動(dòng)】通過情境思考,復(fù)習(xí)前面學(xué)過的知識(shí),學(xué)會(huì)正確選擇三角形全等的判定方法,小組交流,踴躍發(fā)言 【教學(xué)形式】用問題牽引,辨析、鞏固已學(xué)知識(shí),在師生互動(dòng)交流過程中,激發(fā)求知欲 (二)實(shí)踐操作,導(dǎo)入課題 【動(dòng)手動(dòng)腦】(投影顯示) 問題探究:先任意畫一個(gè)ABC,再畫出一個(gè)ABC,使AB=AB,A=A,B=B(即使兩角和它們的夾邊對(duì)應(yīng)相等),把畫出的ABC剪下,放到ABC上,它們?nèi)葐??【學(xué)生活動(dòng)】動(dòng)手操作,感知問題的規(guī)律,畫圖如下: 畫一個(gè)ABC,使AB=AB,A=A,B=B:1 畫AB=AB;2 在AB的同旁畫DAB=A,EBA=B,AD,BE交于點(diǎn)C。 探究規(guī)律:兩角和它們的夾邊對(duì)應(yīng)相等的兩個(gè)三角形全等(簡(jiǎn)寫成“角邊角”或“ASA”) 【知識(shí)鋪墊】課本圖1128中,A=A,B=B,那么C=ACB嗎?為什么? 【學(xué)生回答】根據(jù)三角形內(nèi)角和定理,C=180-A-B,C=180-A-B,由于A=A,B=B,C=C【教師提問】在ABC和DEF中,A=D,B=E,BC=EF(課本圖1129),ABC與DEF全等嗎? 【學(xué)生活動(dòng)】運(yùn)用三角形內(nèi)角和定理,以及“ASA”很快證出ABCEFD,并且歸納如下: 歸納規(guī)律:兩個(gè)角和其中一個(gè)角的對(duì)邊對(duì)應(yīng)相等的兩個(gè)三角形全等(簡(jiǎn)與成AAS) (三)范例點(diǎn)擊,應(yīng)用所學(xué) 【例3】如課本圖11210,D在AB上,E在AC上,AB=AC,B=C,求證:AD=AE【教師活動(dòng)】引導(dǎo)學(xué)生,分析例3關(guān)鍵是尋找到和已知條件有關(guān)的ACD和ABE,再證它們?nèi)?,從而得出AD=AE證明:在ACD與ABE中, ACDABE(ASA) AD=AE 【學(xué)生活動(dòng)】參與教師分析,領(lǐng)會(huì)推理方法 【媒體使用】投影顯示例3 【教學(xué)形式】師生互動(dòng) 【教師提問】三角對(duì)應(yīng)相等的兩個(gè)三角形全等嗎?【學(xué)生活動(dòng)】與同伴交流,得到有三角對(duì)應(yīng)相等的兩個(gè)三角形不一定會(huì)全等,拿出三角板進(jìn)行說明,如圖3,下面這塊三角形的內(nèi)外邊形成的ABC和ABC中,A=A,B=B,C=C,但是它們不全等(形狀相同,大小不等) (四)隨堂練習(xí),鞏固深化 課本P13練習(xí)第1,2題 【探研時(shí)空】 1如圖4,小紅不慎將一塊三角形模具打碎為兩塊,她是否可以只帶其中一塊碎片到商店去,就能配一塊與原來一樣的三角形模具呢?如果可以,帶哪塊去合適?為什么? 【思路點(diǎn)撥】這是一個(gè)實(shí)際問題,應(yīng)帶含有兩個(gè)角的那一塊,由“角邊角”可知,利用這塊能配出一個(gè)與原來全等的三角形模具2.小穎在練習(xí)本上畫一個(gè)三角形,小蘭和她開個(gè)玩笑,將墨跡污染到這塊三角形的圖形上(如圖5),急得小穎直叫,要小蘭畫出一個(gè)與原來完全一樣的三角形來,小蘭該怎么辦呢?你能幫她嗎? 【思路點(diǎn)撥】觀察圖形,可知未被墨水污染的有兩條邊及其夾角,根據(jù)“SAS”可以作一個(gè)與原來完全一樣的三角形 (五)課堂總結(jié),發(fā)展?jié)撃?1證明兩個(gè)三角形全等有幾種方法?如何正確選擇和應(yīng)用這些方法? 2全等三角形性質(zhì)可以用來證明哪些問題?舉例說明 3你在本節(jié)課的探究過程中,有什么感想? (六)布置作業(yè),專題突破 1課本P15習(xí)題112第5,6,9,10題 2選用課時(shí)作業(yè)設(shè)計(jì) 板書設(shè)計(jì) 把黑板分成三部分,左邊部分板書“角邊角”、“角角邊”判定法,中間部分板書例題、畫圖,右邊部分板書練習(xí) 疑難解析已知如圖所示1=2,3=4,求證:ADCBCD 思路點(diǎn)撥:欲證全等的兩個(gè)三角形是ADC和BCD,而ADC的三條邊和三個(gè)角是:AD、DC、AC;DAC、ADC、2,BCD的三條邊和三個(gè)角是:BC、CD、BD;CBD、BCD、12=1,2與1是對(duì)應(yīng)角DC=CD,DC與CD是對(duì)應(yīng)邊,因此看出只需證明ADC=BCD1=2,3=4,1+3=2+4,根據(jù)“角邊角”公理,條件已具備從這個(gè)例子可以看出,在證明三角形全等時(shí),要善于把間接的條件轉(zhuǎn)化為可以直接判定三角形全等的條件第三課時(shí)作業(yè)設(shè)計(jì)1、選擇題1在ABC和ABC中,(1)AB=AB;(2)BC=BC;(3)AC=AC;(4)A=A;(5)B=B;(6)C=C,則下列哪組條件不能保證ABCABC的條件是( ) A具備條件(1)(2)(3) B具備條件(1)(2)(4) C具備條件(3)(4)(5) D具備條件(2)(3)(6)2如圖7所示,ABCDBC,D=30,DBC=55,則ABD=( )A55 B30 C95 D40 圖7 圖8 圖92、填空題3如圖8,已知B=D,DC=BC,還需給出什么條件,即得出ABCDCE,根據(jù)是什么? 條件_,根據(jù)_條件_,根據(jù)_ 條件_,根據(jù)_4如圖9,若AB=AC,D是BC的中點(diǎn),則B=_3、證明題5如圖10,已知AC=EC,1=2=3,求證:AB=DE6如圖11,已知ABC中,ADBC,DE=DC,AE=BD-DC,BE的延長(zhǎng)線交AC于F.求證BFAC7如圖12,已知:AB=CD,AD=BC,求證:B=D4、聚焦中考8如圖13,在AFD和BEC中,點(diǎn)A,E,F(xiàn),C在同一直線上,有下面四個(gè)論斷: (1)AD=CB,(2)AE=CF,(3)B=D,(4)ADBC,請(qǐng)用其中三個(gè)作為條件,余下一個(gè)作為結(jié)論,編一道數(shù)學(xué)問題,并寫出解答過程(六)課后反思作業(yè)設(shè)計(jì)答案:一、1B 2D二、3A=E AAS DE=AB SAS BCA=DCE或BCD=ACE ASA 4C三、5提示:利用三角形內(nèi)角和定理證明ACB=DCE,再證明ABCDCE(AAS) 6提示:證BD=AD,用SAS證ADCBDE,再證BFC=90 7提示:連接AC,證明ACDABC(SSS)四、8開放答案(略)11.2.4 三角形全等的判定(綜合探究) 教學(xué)內(nèi)容 本節(jié)課主要內(nèi)容是三角形全等的判定的綜合運(yùn)用 教學(xué)目標(biāo) 1知識(shí)與技能 理解三角形全等的判定,并會(huì)運(yùn)用它們解決實(shí)際問題 2過程與方法 經(jīng)歷探索三角形全等的四種判定方法的過程,能進(jìn)行合情推理 3情感、態(tài)度與價(jià)值觀 培養(yǎng)良好的幾何思維,體會(huì)幾何學(xué)的應(yīng)用價(jià)值 重、難點(diǎn)與關(guān)鍵 1重點(diǎn):運(yùn)用四個(gè)判定三角形全等的方法 2難點(diǎn):正確選擇判定三角形全等的方法,充分應(yīng)用“綜合法”進(jìn)行表達(dá) 3關(guān)鍵:把握問題的因果關(guān)系,從中尋找思路 教具準(zhǔn)備 投影儀、幻燈片、直尺、圓規(guī) 教學(xué)方法 采用“講練”結(jié)合的教學(xué)法,讓學(xué)生充分體會(huì)到幾何的分析思想 教學(xué)過程 一、分層練習(xí),回顧反思 【課堂演練】 1已知ABCABC,且A=48,B=33,AB=5cm,求C的度數(shù)與AB的長(zhǎng) 【教師活動(dòng)】操作投影儀,組織學(xué)生練習(xí),請(qǐng)一位學(xué)生上臺(tái)演示 【學(xué)生活動(dòng)】先獨(dú)立完成演練1,然后再與同伴交流,踴躍上臺(tái)演示 解:在ABC中,A+B+C=180 C=180-(A+B)=99 ABCABC,C=C, C=99, AB=AB=5cm 【評(píng)析】表示兩個(gè)全等三角形時(shí),要把對(duì)應(yīng)頂點(diǎn)的字母寫在對(duì)應(yīng)位置上,這時(shí)解題就很方便 2已知:如圖1,在AB、AC上各取一點(diǎn)E、D,使AE=AD,連接BD、CE相交于點(diǎn)O,連接AO,1=2求證:B=C 【思路點(diǎn)撥】要證兩個(gè)角相等,我們通常用的辦法有:(1)兩直線平行,同位角或內(nèi)錯(cuò)角相等;(2)全等三角形對(duì)應(yīng)角相等;(3)等腰三角形兩底角相等(待學(xué)) 根據(jù)本題的圖形,應(yīng)考慮去證明三角形全等,由已知條件,可知AD=AE,1=2,AO是公共邊,叫ADOAEO,則可得到OD=OE,AEO=ADO,EOA=DOA,而要證B=C可以進(jìn)一步考查OBEOCD,而由上可知OE=OD,BOE=COD(對(duì)頂角),BEO=CDO(等角的補(bǔ)角相等),則可證得OBFOCD,事實(shí)上,得到AEO=AOD之后,又有BOE=COD,由外角的關(guān)系,可得出B=C,這樣更進(jìn)一步簡(jiǎn)化了思路 【教師活動(dòng)】操作投影儀,巡視、啟發(fā)引導(dǎo),關(guān)注“學(xué)困生”,請(qǐng)學(xué)生上臺(tái)演示,然后評(píng)點(diǎn) 【學(xué)生活動(dòng)】小組合作交流,共同探討,然后解答 【媒體使用】投影顯示演練題2 【教學(xué)形式】分組合作,互相交流 【教師點(diǎn)評(píng)】在分析一道題目的條件時(shí),盡量把條件分析透,如上題當(dāng)證明ADOAEO之后,可以得到OD=OE,AEO=ADO,EOA=DOA,這些結(jié)論雖然在進(jìn)一步證明中并不一定都用到,但在分析時(shí)對(duì)圖形中的等量及大小關(guān)系有了正確認(rèn)識(shí),有利于進(jìn)一步思考 證明 在AEO與ADO中, AE=AD,2=1,AO=AO, AEOADO(SAS),AEO=ADO 又AEO=EOB+B,AOD=DOC+C 又EOB=DOC(對(duì)應(yīng)角),B=C 3如圖2,已知BAC=DAE,ABD=ACE,BD=CE求證:AD=AE 【思路點(diǎn)撥】欲證相等的兩條線段AD、AE分別在ABD和ACE中,由于BD=CE,ABD=ACE,因此要證明ABDACE,則需證明BAD=CAE,這由已知條件BAC=DAE容易得到 【教師活動(dòng)】操作投影儀:引導(dǎo)學(xué)生思考問題 【學(xué)生活動(dòng)】分析、尋找證題思路,獨(dú)立完成演練題3 證明:BAC=DAE BAC-DAC=DAE-DAC即BAD=CAE 圖2 在ABD和ACE中, BD=CE,ABD=ACE,BAD=CAE, ABDACE(AAS), AD=AE 【媒體使用】投影顯示演練題3 【教學(xué)形式】講練結(jié)合 二、隨堂練習(xí),繼續(xù)鞏固1如圖3,點(diǎn)E在AB上,AC=AD,CAB=DAB,ACE與ADE全等嗎?ACB與ADB呢?請(qǐng)說明理由 答案:ACEADE,ACBADB,根據(jù)“SAS” 2如圖4,儀器ABCD可以用來平分一個(gè)角,其中AB=AD,BC=DC,將儀器上的點(diǎn)A與PRQ的頂點(diǎn)R重合,調(diào)整AB和AD,使它們落在角的兩邊上,沿AC畫一條射線AE,AE就是PRQ的平分線,你能說明其中道理嗎? 小明的思考過程如下: ABCADCQRE=PRE你能說出每一步的理由嗎? 圖4 3如圖5,斜拉橋的拉桿AB,BC的兩端分別是A,C,它們到O的距離相等,將條件標(biāo)注在圖中,你能說明兩條拉桿的長(zhǎng)度相等嗎? 答案:相等,因?yàn)锳BOCBO(SAS),從而AB=CB 圖5 三、布置作業(yè),專題突破 1課本P16習(xí)題112第11,12題 2選用課時(shí)作業(yè)設(shè)計(jì) 板書設(shè)計(jì) 把黑板分成兩份,左邊板書概念、例題,右邊板書練習(xí) 疑難解析已知如圖6,BEC=BDC,BE=CD,求證:1=2 圖6 思路點(diǎn)撥:欲證1=2,可考慮證明AOEAOD或AOBAOC,由條件不難發(fā)現(xiàn)前者有ADO=AEO,AO=AO,后者有C=B,AO=AO,二者具備的條件一樣,很難判斷證哪一個(gè)更好,因此,必須進(jìn)一步分析條件,不難發(fā)現(xiàn)BOECOD,從而得OB=OC,OE=OD,但這兩個(gè)條件加進(jìn)去之后,又不難發(fā)現(xiàn)兩組特征的全等三角形所滿足的條件都是SSA,而它不能

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論