




已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
*Correspondingauthor.Tel.:#30-31-498-143;fax:#30-31-498-180.E-mail address: georgiadcperi.certh.gr(M.C.Georgiadis).Computers&OperationsResearch29(2002)10411058AnalgorithmforthedeterminationofoptimalcuttingpatternsGordianSchillingp0,MichaelC.Georgiadisp1p11*p0Ciba Specialty Chemicals Inc., CH-1870 Monthey, Switzerlandp1Centre for Research and Technology - Hellas, Chemical Process Engineering Research Institute, P.O. Box 361,Thermi 57001, Thessaloniki, GreeceReceived1June2000;receivedinrevisedform1September2000;accepted1October2000AbstractThispaperpresentsanewmathematicalprogrammingformulationfortheproblemofdeterminingtheoptimalmannerinwhichseveralproductrollsofgivensizesaretobecutoutofrawrollsofoneormorestandardtypes.Theobjectiveistoperformthistasksoastomaximizetheprottakingaccountoftherevenuefromthesales,thecostsoftheoriginalrolls,thecostsofchangingthecuttingpatternandthecostsofdisposalofthetrim.Amixedintegerlinearprogramming(MILP)modelisproposedwhichissolvedtoglobaloptimalityusingstandardtechniques.Anumberofexampleproblems,includinganindustrialcasestudy,arepresentedtoillustratethee$ciencyandapplicabilityoftheproposedmodel.Scope and purposeOne-dimensional cutting stock (trim loss) problems arise when production items must be physicallydividedintopieceswithadiversityofsizesinonedimension(e.g.whenslittingmasterrollsofpaperintonarrower width rolls). Such problems occur when there are no economies of scale associated with theproductionofthelargerraw(master)rolls.Ingeneral,theobjectivesinsolvingsuchproblemsareto5:p69 minimizetrimloss;p69 avoidproductionover-runsand/or;p69 avoidunnecessaryslittersetups.Theaboveproblemisparticularlyimportantinthepaperconvertingindustrywhenasetofpaperrollsneedtobecutfromrawpaperrolls.Sincethewidthofaproductisfullyindependentofthewidthoftherawpaperahighlycombinatorialproblemarises.Ingeneral,thecuttingprocessalwaysproducesinevitabletrim-losswhichhastobeburnedorprocessedinsomewastetreatmentplant.Trim-lossproblemsinthepaperindustryhave, in recent years, mainly been solved using heuristic rules. The practical problem formulationhas,therefore,inmostcasesbeenrestrictedbythefactthatthesolutionmethodsoughttobeabletohandletheentireproblem.Consequently,onlyasuboptimalsolutiontotheoriginalproblemhasbeenobtainedand0305-0548/02/$-seefrontmatter p7 2002ElsevierScienceLtd.Allrightsreserved.PII: S0305-0548(00)00102-7veryoftenthisrathersignicanteconomicproblemhasbeenlefttoamanualstage.Thisworkpresentsa novel algorithm for e$ciently determining optimal cutting patterns in the paper converting process.Amixed-integerlinearprogrammingmodelisproposedwhichissolvedtoglobaloptimalityusingavailablecomputertools.Anumberofexampleproblemsincludinganindustrialcasestudyarepresentedtoillustratetheapplicabilityoftheproposedalgorithm. p7 2002ElsevierScienceLtd.Allrightsreserved.Keywords: Integerprogramming;Optimization;Trim-lossproblems;Paperconvertingindustry1. IntroductionAnimportantproblemwhichisfrequentlyencounteredinindustriessuchaspaperisrelatedwiththemosteconomicmannerinwhichseveralproductrollofgivensizesaretobeproducedbycuttingoneormorewiderrawrollsavailableinoneormorestandardwidths.Thesolutionofthisprobleminvolvesseveralinteractingdecisions:p69 Thenumberofproductrollsofeachsizetobeproduced.Thismaybeallowedtovarybetweengivenlowerandupperbounds.Theformernormallyre#ectthe rmordersthatarecurrentlyoutstanding,whilethelattercorrespondtothemaximumcapacityofthemarket.However,certaindiscountsmayhavetobeo!eredtosellsheetsoverandabovethequantitiesforwhichrmordersareavailable.p69 Thenumberofrawrollsofeachstandardwidthtobecut.Rollsmaybeavailableinoneormorestandardwidths,eachofadi!erentunitprice.p69 Thecuttingpatternforeachrawroll.Cuttingtakesplaceonamachineemployinganumberofknivesoperatinginparallelonarollofstandardwidth.Whilethepositionoftheknivesmaybechangedfromonerolltothenext,suchchangesmayincurcertaincosts.Furthermore,theremaybecertaintechnologicallimitationsontheknifepositionsthatmayberealizedbyanygivencuttingmachine.Theoptimalsolutionoftheaboveproblemisoftenassociatedwiththeminimizationofthetrima waste that is generally unavoidable since rolls of standard widths are used. However,trim-lossminimizationdoesnotnecessarilyimplyminimizationofthecostoftherawmaterials(rolls)beingusedespeciallyifseveralstandardrollsizesareavailable.Amoredirecteconomiccriterionisthemaximizationoftheprotoftheoperationtakingaccountof:p69 therevenuefromproductrollssales,includingthee!ectsofanybulkdiscounts;p69 thecostoftherollsthatareactuallyused;p69 thecosts,ifany,ofchangingtheknifepositionsonthecuttingmachine;p69 thecostofdisposingoftrimwaste.Theaboveconstitutesahighlycombinatorialproblemanditisnotsurprisingthattraditionallyitssolutionhasoftenbeencarriedoutmanuallybasedonhumanexpertise.Thesimpliedversionofthisproblemissimilartothecuttingstockproblemknownintheoperation-researchliterature,whereanumberoforderedpiecesneedtobecuto!biggerstoredpiecesinthemosteconomicfashion.Inthe1960sandthe1970s,severalscienticarticleswerepublishedontheproblemof1042 G. Schilling, M.C. Georgiadis/Computers & Operations Research 29 (2002) 10411058minimizingtrimloss,e.g.1,2.Hinxman3presentsagoodoverviewoftheavailablesolutionmethodsfortrim-lossandassortmentproblems.GilmoreandGomory1presentedabasiclinearprogrammingapproachtothecuttingstockproblemwhilerelaxingsomeinteger-charactersof theproblem.GilmoreandGomory2de-scribed an iterative solution method that is suitable for very large number of orders and iscomputationalcheap,buttheresultingvaluesforthenumberofcuttingpatternstobeusedarenon-integeranditisnotpossibletoprovetheoptimalityorindicatethemarginofoptimalityofthese cutting patterns. Thus, the rounding values obtained by the algorithm of Gilmore andGomory2mayveryprobablyresultinpooreconomicperformance.Wascher4presentedalinearprogrammingapproachtocuttingstockproblemstakingintoaccountmultipleobjectivessuchascostoftherawmaterials,costoftheoverproductionstorage,trim-lossremovalcosts,etc.Sweeny5proposedaheuristicprocedureforsolvingone-dimensionalcuttingstockproblemswithmultiplequalitygrades.Ferreiraetal.6consideredthetwo-phaserollcuttingproblemsbased on a heuristic approach. Gradisar et al. 7 presented an e$cient sequential heuristicprocedureand a softwaretool for optimizationof roll cutting in theclothing industry.Later,Gradisaretal.8developedanimprovedsolutionstrategybasedonacombinationofapproxima-tionsandheuristicsleadingtoalmostoptimalsolutionsfortheone-dimensionalstockcuttingproblems.Asoftwaretoolwasalsodeveloped.Inrecentyears,integerprogrammingtechniqueshavebeenusedforthesolutionofthetrim-lossand production optimization problem in the paper industry. The work of Westerlund andcoworkersatAp15 boAkademiUniversityinFinlandisakeycontributioninthisarea.Harjunkoski9consideredamathematicalprogrammingapproachtothetrim-lossproblemandpresentedtwodi!erenttypesofformulation.Intherstone,boththecuttingpatternsthatneedtobeusedandthenumberofrollsthathavetobecutaccordingtoeachsuchpatternaretreatedasunknowns.Thisresultsinanintegernonlinearmathematicalproblem(INLP)involvingbilinearproblemsofthevariablescharacterizingeachcuttingpatternandthecorrespondingnumberofrollscutinthisway.Twodi!erentwaysoflinearizingtheINLPtoobtainamixedintegerlinearprogramming(MILP)modewerepresented.However,theselinearizationsoftenresultinasignicantincreaseinthenumberofvariablesandconstraints,aswellasalargeintegralitygap.ThesecondtypeofformulationpresentedbyHarjunkoski9isbasedonusingaxedsetofcuttingpatternsthatisdecidedapriori.ThisresultsinaMILPthathasamuchsmallerintegralitygapthantheoneresultingfromthelinearizationoftheINLPformulationmentionedabove.However,thesolutionobtainedisguaranteedtobeoptimalonlyifallnon-inferiorcuttingpatternsareidentiedandtaken into consideration. The number of such patterns may be quite substantial for realisticindustrialproblems.Extendingtheabovework,Harjunkoski10presentedlinearandconvexformulationsforsolvingthenon-convextrim-lossproblems.Westerlund11consideredthetwo-dimensionaltrim-lossprobleminpaperconverting.Anon-convexoptimizationmodelwasproposedwhereboththewidthsandthelengthsoftherawpaperwereconsideredasvariables.Atwo-stepsolutionprocedurewasusedwhereallfeasiblecuttingpatternswere rst generated and then a MILP problem was solved.In a similar fashion,theproductionoptimizationprobleminthepaperconvertingindustrywasaddressedbyWesterlund12.Schedulingaspectsofthecuttingmachinesinpaperconvertingweresimultaneouslycon-sideredwiththetrim-lossproblembyWesterlund13.Recently,Harjunkoski14incorporatedenvironmentalimpactconsiderationsintoageneralframeworkfortrim-lossminimization.G. Schilling, M.C. Georgiadis/Computers & Operations Research 29 (2002) 10411058 1043ThispaperpresentsanalternativemathematicalprogrammingformulationthatresultsdirectlyinaMILPofsmallintegralitygap.Thesalientfeatureofthismodelisthatitdoesnotrequireapriorienumerationofallpossiblecuttingpatterns.Thenextsectionpresentsaformalstatementoftheproblemunderconsiderationandthenotationused.Section3considersthemathematicalformulationoftheobjectivefunctionandtheoperationalconstraints.Thisisfollowedbysomeexampleproblemsincludinganindustrialcasestudyillustratingtheapplicabilityandcomputa-tionalbehavioroftheproposedformulation.2. Problem statement and dataThetaskbeingconsideredhereistoproduceproductrollsofIdi!erenttypes,thewidthoftypeibeingdenotedbyBp71,i1,2,Ifromoneormorestandardrolls.Thelengthsofallrawrollsandoftheproductrollsresultingfromthemareassumedtobeidenticalandxed.Itisbeyondthescopeofthisworktoconsiderthetwo-dimensionalproblemwhereboththewidthsandthelengthsofrawpaperrollsandthecuttingpatternsareconsideredvariables.Productrollsaremostlyproducedtoorder.Theminimumorderedquantityforproductrollsofwidth i is denoted by Np13p9p14p71and is given, and so is the correspondingunit price pp71. However,customersmaybewillingtobuyadditionalrollsoftypeiuptoamaximumquantityNp13p0p24p71subjecttoadiscountofcp3p9p19p2p71foreachproductrolloverandabovetheminimumnumberNp13p9p14p71.Ingeneral,thenumberofadditionalrollssoldinthismannertendstoberathersmallsincethemainincentiveofsuchdiscountingfromthe pointofviewofthe manufacturerismerelyto decreasethe lossthroughtrim.Theproductrollsaretobecutfromrawrollsofdi!erentstandardtypes.Theunitpriceforarawrolloftypetisdenotedbycp18p15p12p12p82anditsnominalwidthbyBp18p15p12p12p82.However,theusefulwidthofa roll of type t is determined by the cutting machine used. In particular, each raw roll typet1,2,ischaracterizedbyamaximumpossibletotalengagementBp13p0p24p82denotingthemaximumtotalwidthofallproductrollsthatcanbecutfromarawrollofthistype.Theremayalsobeaminimumrequiredtotalengagement Bp13p9p14p82forthistypeofroll.IngeneralBp13p9p14p82)Bp13p0p24p82)Bp82, t1,2,.Themaximumnumber Np13p0p24p82ofproductrollsthatcanbecutoutofarawrolloftype t willgenerally be determined by the knives and other characteristics of the available machine.Moreover,insomecases,theremaybelimitationsintheavailablenumberJHp82ofrawrollsofagiventype t.Thecuttingpatternforeachraw rollis determinedby the positionof theknives.Frequentchangesinthesepositionsaregenerallyundesirable.Eachsuchchangemaythereforebeassociatedwithanon-zerocost cp2p8p0p14p6p4.Theproductionoftherequiredproductrollsfromtheavailablerawrollsmayresultintrimwastewhichmayneedtobedisposedof.Thecostofsuchdisposalperunitwidthoftrimisdenotedby cp3p9p19p16.Basedonthegivendata,werstderiveanupperboundJonthenumberofrawrollsthatmayneedtobecut.ThisisobtainedbyassumingthatthemaximumnumberNp13p0p24p71ofproductrollsofeach type i will be produced; that raw rolls of the type t that permits the smallest minimum1044 G. Schilling, M.C. Georgiadis/Computers & Operations Research 29 (2002) 10411058engagement Bp13p9p14p82willbeused;andthateachrawrollwillbeusedtoproduceproductrollsofasingletypeonly.Overall,thisleadstothefollowingupperboundonthenumberofrawrollsthatmayberequired:Jp13p0p24p39p9p71p14p16Np13p0p24p71p87minp82Bp13p9p14p82/Bp71p88. (1)We can also calculate a lower bound Jp13p9p14 on the minimum number of raw rolls that arenecessarytosatisfytheminimumdemandfortheexistingorders.Wedothisbyassumingthatrollsof the type t allowing the maximum possible engagement Bp13p0p24p82are used, and that no trim isproduced.However,wemustalsotakeaccountofpossiblelimitationsonthenumberofavailableknives. Overall, this leads to the following lower bound on the number of rolls that mayberequired:Jp13p9p14maxp7p9p39p71p14p16Np13p9p14p71Bp71maxp82Bp13p0p24p82,p9p39p71p14p16Np13p9p14p71maxp82Np13p0p24p82p8. (2)3. Mathematical formulationTheaimofthemathematicalformulationistodeterminethetypetofeachrawrolljtobecutandthenumberofproductrollsofeachtype i tobeproducedfromit.3.1. Key variablesThefollowingintegervariablesareintroduced:np71p72:numberofproductrollsoftype i tobecutoutofrawroll jafii9773p71: numberofproductrollsoftype i producedoverandabovetheminimumnumberordered.Wenotethat np71p72cannotexceed:p69 themaximumnumber Np13p0p24p71ofproductrollsoftype i thatcanbesold;p69 themaximumnumberofproductrollsofwidth Bp71thatcanbeaccommodatedwithinamax-imumengagementBp13p0p24p82forarawrolloftype t;p69 themaximumnumber Np13p0p24p82ofknivesthatcanbeappliedtoarawrolloftype t.Thisleadstothefollowingboundsfor np71p72:0)np71p72)minp1Np13p0p24p71,maxp16p87p82p87p50Bp13p0p24p82Bp71,maxp16p87p82p87p50Np13p0p24p82p2i1,2,I, j1,2,Jp13p0p24. (3)Also0)afii9773p71)Np13p0p24p71!Np13p9p14p71, i1,2,I. (4)G. Schilling, M.C. Georgiadis/Computers & Operations Research 29 (2002) 10411058 1045Wenotethat afii9773p71needtobeincludedinthemodelonlyif Np13p0p24p71Np13p9p14p71.Wealsointroducethefollowingbinaryvariables:yp82p72p71 ifthe jthrolltobecutisoftype t,0 otherwise.zp72p71 ifthecuttingpatternforpaperroll j isdifferenttothatforroll j!1,0 otherwise.Wenotethat,ingeneral,theindexjwillbeintherange1,2,Jp13p0p24.However,theformulationtobepresentedwillassignatypet onlytotherawrollsjthatareactuallyused.Hence,thetotalnumberofrollstobecutwillalsobedeterminedbythesolutionoftheoptimizationproblem.Thiswillbecomeclearerinthenextsubsection.3.2. Roll type determination constraintsEachrawroll j tobecutmustbeofauniquetype t.Thisresultsinthefollowingconstraints:p50p9p82p14p16yp82p721, j1,2,Jp13p9p14, (5a)p50p9p82p14p16yp82p72)1, jJp13p9p14#1,2,Jp13p0p24. (5b)Notethatfor jJp13p9p14,itispossiblethat yp82p720for all types t;thissimplyimpliesthatitisnotnecessarytocutroll j.Furthermore,thelimitedavailabilityofrawrollsofagiventypetmaybeexpressedintermsoftheconstraintp40p13p0p24p9p72p14p16yp82p72)JHp82, t1,2,. (6)3.3. Cutting constraintsWeneedtoensurethat,ifarolljistobecut,thenthelimitationsontheminimumandmaximumengagementareobserved.Thisisachievedviatheconstraintsp50p9p82p14p16Bp13p9p14p82yp82p72)p39p9p71p14p16Bp71np71p72)p50p9p82p14p16Bp13p0p24p82yp82p72, j1,2,Jp13p0p24. (7)Wenotethatthequantityp9p39p71p14p16Bp71np71p72representsthetotalwidthofallproductrollstobecutoutofrawroll j.Ifyp82p721forsomerolltype t,thenconstraint(7)ensuresthatBp13p9p14p82)p39p9p71p14p16Bp71np71p72)Bp13p0p24p82.1046 G. Schilling, M.C. Georgiadis/Computers & Operations Research 29 (2002) 10411058Ontheotherhand,ifyp82p720forall t,thenconstraint(7)e!ectivelyforcesnp71p720foralli1,2,I.Thisexpressestheobviousfactthatifrolljisnotactuallycut,thennoproductrollsofanytypecanbeproducedfromit.Wealsoneedtoensurethatthenumberofproductrollscutoutofanyrolljoftypetdoesnotexceedthenumberofknivesthatcanbedeployedonrollsofthistype.Thisiswrittenas0)p39p9p71p14p16np71p72)p50p9p82p14p16Np13p0p24p82yp82p72, j1,2,Jp13p0p24. (8)3.4. Production constraintsThetotalnumberofproductrollsofeachtype i thatareproducedcomprisestheminimumorderedquantity Np13p9p14p71forthistypeplusthesurplusproductionafii9773p71:p40p13p0p24p9p72p14p16np71p72Np13p9p14p71#afii9773p71, i1,2,I. (9)Theseconstraints,togetherwiththeboundsonafii9773p71,ensurethatthequantityofproductrollsoftypei producedliesbetweentheminimumandmaximumbounds Np13p9p14p71and Np13p0p24p71,respectively.3.5. Changeover constraintsIfchangingthecuttingpatternincursanon-zerocost cp2p8p0p14p6p40,weneedtodeterminewhensuchchangeswilltakeplace.Tothisend,weincludethefollowingconstraint:!Mp71zp72)np71p72!np71p11p72p92p16)Mp71zp72, i1,2,I, j2,2,Jp13p0p24. (10)Notethatthiswillallowzp72tobezeroonlyifnp71p72np71p11p72p92p16forallproductrollsi,i.e.ifrollsjandj!1arecutinexactlythesameway.Here,theconstantMp71isanupperboundonnp71p72(seeSection3.1).3.6. Objective functionTheobjectiveoftheoptimizationistomaximizethetotalprotoftheoperationtakingaccountof:p69 Theincomefromthesalesofproductrollsofeachtype i.Thiscomprisestheincomefromsellingtheminimumorderedquantities Np13p9p14p71atthefullunitprice pp71,plus theincomeof sellingtheadditionalquantities afii9773p71atthe discountedunitpricepp71!cp3p9p19p2p71:p39p9p71p14p16(pp71Np13p9p14p71#afii9773p71(pp71!cp3p9p19p2p71).p69 Thecostsoftherollstobecut.Generally,thecostofeachrolldependsonitstype.Thetotalcostcanbewrittenasp40p13p0p24p9p72p14p16p9p82p14p16cp18p15p12p12p82yp82p72.G. Schilling, M.C. Georgiadis/Computers & Operations Research 29 (2002) 10411058 1047Wenotethat,foreachrollj,atmostonetermoftheinnersummationisnon-zero(cf.constraints(5a)and(5b).p69 Thecostsofchangingthepositionsoftheknives.Ingeneral,theknifepositionshavetobechangedifthecuttingpatternusedforagivenrolljisdi!erenttothatforthepreviousone.Thisisdeterminedbythevariableszp72andresultsinthecosttermcp2p8p0p14p6p4p40p13p0p24p9p72p14p17zp72,wherethesummationisequaltothetotalnumberofchangesthatarenecessary.p69 Thecostofdisposingofanytrimproduced.Thewidthoftrimproducedoutofrawrolljisgivenbythedi!erencebetweentherollwidthandthetotalwidthofallproductrollscutfromit.Theformerquantitydependsonthetypeoftherollandcanbeexpressedasp9p50p82p14p16Bp18p15p12p12p82yp82p72;onceagain,atmostoneofthetermsinthissummationcanbenon-zero(cf.constraints(5a)and(5b).Thelatterquantityisgivenbyp9p39p71p14p16Bp71np71p72.Overall,trimdisposalresultsinthefollowingcosttermcp3p9p19p16p40p13p0p24p9p72p14p16p1p50p9p82p14p16Bp18p15p12p12p82yp82p72!p39p9p71p14p16Bp71np71p72p2.Theabovetermscannowbecollectedinthefollowingobjectivefunction:maxp3p39p9p71p14p16(pp71Np13p9p14p71#afii9773p71(pp71!cp3p9p19p2p71)!p40p13p0p24p9p72p14p16p9p82p14p16cp18p15p12p12p82yp82p72!cp2p8p0p14p6p4p40p13p0p24p9p72p14p17zp72!cp3p9p19p16p40p13p0p24p9p72p14p16p1p50p9p82p14p16Bp18p15p12p12p82yp82p72!p39p9p71p14p16Bp71np71p72p2p4. (11)Notethatthersttermintheaboveobjectivefunction(i.e.p9p39p71p14p16pp71Np13p9p14p71)isactuallyaconstantanddoesnota!ecttheoptimalsolutionobtained.3.7. Degeneracy reduction and constraint tighteningIngeneral,thebasicformulationpresentedaboveishighlydegenerate:givenanyfeasiblepoint,onecangeneratemanyotherssimplybyformingallpossibleorderingoftherollsselectedtobecut.Moreover,providedallrawrollsofthesametypearecutconsecutively,allthesefeasiblepointswillcorrespondtoexactlythesamevalueoftheobjectivefunction.Theabovepropertymayhaveadversee!ectsonthee$ciencyofthesearchprocedure.Therefore,in order to reduce the solution degeneracy without any loss of optimality, we introduce thefollowingorderingconstraints:p39p9p71p14p16np71p11p72p92p16*p39p9p71p14p16np71p72, j2,2,Jp13p0p24. (12)Thisensuresthatthetotalnumberofproductrollscutoutofrawrollj!1isneverlowerthanthecorrespondingnumberforroll j;allcompletelyunusedrawrollsareleftlastinthisordering.1048 G. Schilling, M.C. Georgiadis/Computers & Operations Research 29 (2002) 10411058Analternativewouldbetoordertherawrollsinnon-increasingutilizationorder,i.e.p39p9p71p14p16Bp71np71p11p72p92p16*p39p9p71p14p16Bp71np71p72, j2,2,Jp13p0p24.However,ourpracticalexperienceindicatesthatthisisnotase!ectiveasconstraint(12).Wealsonotethattheconstraints(7)implicitlyimposealowerboundonthetotalnumberofproductrollsp9p39p71p14p16np71p72cutoutofarawroll j.Astrongerboundmaysometimesbeobtainedbyconsideringarolloftypetbeingusedattheminimumpossibleengagementtoproducethewidestpossibleproductrolls.Thisleadstotheconstraintsp50p9p82p14p16Bp13p9p14p82maxp71Bp71yp82p72)p39p9p71p14p16np71p72, j1,2,Jp13p0p24. (13)3.8. CommentsTheobjectivefunctionandallconstraintsintroducedinthissectionarelinear.Sinceallvariablesareintegervalued,theformulationpresentedcorrespondstoanintegerlinearprogramming(ILP)problem.However,constraints(9)ensurethatthevariablesafii9773p71willautomaticallyassumeintegervaluesprovidedvariablesnp71p72doso.Therefore,afii9773p71maybetreatedascontinuousquantities,whichleavesuswithamixedintegerlinearprogramming(MILP)problem.Inprinciple,thelattercanbesolvedusingstandardMILPsolvers.Inthespecial(butquitecommon)casewhereonlyonetypeofrollisavailable,constraints(5a)simplyimplythat yp82p72canbe xed to1 forall j1,2,Jp13p9p14. Both(5a)and (5b)are otherwiseredundant and may be dropped. Furthermore, the lower bound on constraint (7) is directlyincludedintheboundsofthecorrespondingslackvariable,0; Bp13p0p24p82!Bp13p9p14p82,whichresultsinonelessconstraintforeachroll j.4. Example problemsIn this section, we consider four example problems of increasing complexity in order toinvestigatethecomputationalbehaviorofourformulation.Furthermoreanindustrialcasestudyisalsopresented.Inallcases,weassumethatthemaximumrawrollengagementBp13p0p24p82isequaltothecorrespondingrollwidthBp18p15p12p12p82.TheGAMS/CPLEXvs6.0solverhasbeenusedforthesolution15andallcomputationswerecarriedoutonaAlphaServer4100.Anintegralitygapof0.1%wasassumedforthesolutionofallproblems.4.1. Example 1OurrstexampleisbasedonthatgivenbyHarjunkoski9.Sometranslationofthevariouscostcoe$cientswasnecessarytoaccountforslightdi!erencesintheobjectivefunctionsusedbythetwoformulations.Alsonotethattheobjectiveusedbythoseauthorsistheminimizationofcostasopposedtothemaximizationofprot;therefore,thesignoftheirobjectivefunctionisoppositetothatofours.G. Schilling, M.C. Georgiadis/Computers & Operations Research 29 (2002) 10411058 1049Table1RawrollcharacteristicsforExample1Rolltype Width Bp18p15p12p12p82Max.spill Bp13p0p24p82!Bp13p9p14p82Max.cuts Np13p0p24p82Cost cp18p15p12p12p821 1900mm 200mm 5 1900Table2ProductiondataforExample1Productrolltype iWidth Bp71(mm)Min.quantityNp13p9p14p71Max.quantityNp13p0p24p71Pricepp71Discountcp3p9p19p2p711 30810297.0 02 360 7 8 324.0 03 385 12 13 346.5 04 415 11 11 373.5 0p16Eachverticalbarcorrespondstoadi!erentrollbeingcut.Thecorrespondingrolltypeisshownimmediatelyaboveeachbar.Eachbarisdividedintoanumberofsegmentscorrespondingtosheetsoftheindicatedtype.Thedarkshadedsegmentatthetopofthebaristhetrim-loss,thepercentagewidthofwhichisindicatednumericallyatthebottomofthegure.Theproblemaimstodeterminetheoptimalcuttingpatternforproducingfourdi!erenttypesofproductrollsfromasingletypeofrawroll.ThecharacteristicsofthelatterareshowninTable1.TheproductionrequirementsaresummarizedinTable2.Thecostforchangingthecuttingpatternis 1,whiledisposingofthetrimincursnocost.Harjunkoski 9 assumed a maximum of four di!erent cutting patterns, which results inareductionofthesizeofthemodel.Inourcase,thenumberofsuchpatternsisdeterminedbythesolution.Alsofromexpressions(1)and(2),wedetermineJp13p0p2410andJp13p9p148.Wethereforexyp16p721,for j1,2,8.ThesolutionweobtainisthesameasthatreportedbyHarjunkoski9involvingtheproductionoftheminimumorderedamountsofproductrollsplusoneextrarolloftype2andanotheroftype3.ThesolutionispresentedpictoriallyinFig.1p16 andcorrespondstoanobjectivefunctionvalueof!1622.0;thus,withthegiveneconomicdatatheoperationincursaloss.Theoptimalsolution(withinamarginofoptimalityof0.1%)isfoundwithinlessthan1CPUsatnode49ofthebranch-and-boundalgorithmusingabreadthrstsearchstrategy.ItmustbenotedthattheintegralitygapofourformulationiscomparabletothatforoneoftheformulationspresentedbyHarjunkoski9despitethefactthatitdoesnotemployanyapriorienumerationofthecuttingpatterns.Ourformulationalsoexaminesasmallnumberofnodesinordertodetecttheoptimalpoint(Table3).1050 G. Schilling, M.C. Georgiadis/Computers & Operations Research 29 (2002) 10411058Fig.1. SolutionofExample1.Table3ComputationalstatisticsforExample1OptimalobjectiveFullyrelaxedobjectiveIntegralitygap(%)NodesinB&BVariables(Bin/Int/Cont)Constraints(!)1622.0 (!)1619.4 0.18 49 60(13/44/3) 1154.2. Example 2ThedataforthisproblemaregiveninTables4and5.Thereisnocostforchangingthecuttingpatternorfordisposingoftrim.Usingexpressions(1)and(2),itispossibletocalculateapriorithatthenumberofrawrollsrequiredwillbebetween11and15.Althoughthisprobleminvolvesonly9typesofproductrolls,thereareatotalof3971di!erentcuttingpatterns,allofwhicharefeasiblewithrespecttotheminimumandmaximumallowedtotalengagementoftherolls,themaximumnumberofknivesthatcanbeappliedtoarollandthemaximum quantities of sheets ordered. Thus, any formulation that relies on explicit patternenumeration would have to involve a large number of discrete variables. This is, of course,awell-knownproblemwiththeclassicalapproachtothecuttingstockproblem.Our algorithm obtains the exact (0% optimality margin) optimal solution for this problemwithin less than 1CPUs. This solution is presented in Fig. 2. Computational performancestatisticsaregiveninTable6.G. Schilling, M.C. Georgiadis/Computers & Operations Research 29 (2002) 10411058 1051Table4RawrollcharacteristicsforExample2Rolltype Width Bp13p0p24p82Max.spill Bp13p0p24p82!Bp13p9p14p82Max.cuts Np13p0p24p82Cost cp18p15p12p12p821 1900mm 200mm 5 1600Table5ProductiondataforExamples2and3Productrolltype iWidth Bp71(mm)Min.quantityNp13p9p14p71Max.quantityNp13p0p24p71Pricepp71Discountcp3p9p19p2p711 340 8 10 C340 C02 365 7 8 C365 C03 385 12 13 C385 C04 415 1 11 C415 C05 435 5 5 C435 C06 260 6 8 C260 C07 300 4 4 C300 C08 320 7 8 C320 C09 335 3 3 C335 C0Fig.2. SolutionofExample2.1052 G. Schilling, M.C. Georgiadis/Computers & Operations Research 29 (2002) 10411058Table6ComputationalstatisticsforExamples2,3and4Formulation Optimal Fullyrelaxed Integrality Nodes Variables Constraintsobjective objective gap(%) inB&B (Int/Bin/Cont)Example2 2590.0 2630.0 1.54 43 173(6/162/5) 61Example3 3030.0 3030.0 0 131 203(36/162/5) 116Example4 1240.0 1279.3 3.16 14,800 173(6/162/5) 61Table7RawrollcharacteristicsforExample3Rolltype Width Bp13p0p24p82Max.spill Bp13p0p24p82!Bp13p9p14p82Max.cuts Np13p0p24p82Cost cp18p15p12p12p821 1900mm 200mm 5 C16002 2200mm 250mm 6 C18504.3. Example 3ThisexampleissimilartoExample2,theonlydi!erencebeingthatupto6rawrollsofadi!erenttypearenowalsoavailabletobecut(seeTable7).Sinceawiderrollisnowavailable,theminimumnumber Jp13p9p14 ofrequiredrollsisreducedto9(from11inExample2),butthemaximumnumberJp13p0p24 ofrollsremainsthesame,namely15.Theexact(0%optimalitymargin)optimalsolutionwasobtainedinlessthan1CPUs.ThesolutionispresentedinFig.3withthecomputationalperformancestatisticsshowninTable6.Themaximumpossiblenumberofrawrollsoftype2isused.Itisinterestingtomentionthat,ifnoupperlimitonthenumberofrawrollsoftype2isimposed,onlyrollsofthistypeareactuallyengaged.ThisthenresultsinahigherprotofC3380.4.4. Example 4ThisexampleissimilartoExample2,theonlydi!erencebeingthatthecostcoe$cientsforchangingthecuttingpattern, cp2p8p0p14p6p4 andfordisposingofwastetrim, cp3p9p19p16 areequalto10and1,respectively.ThecomputationalperformanceisshowninTable6.Weobservethataconsiderablelargernumberof nodesin the branch-and-boundtreeis required comparingwithExample2.However,theintegralitygapisrelativelysmall.4.5. Example 5Onejustiedconcernwithourformulationisthewayinwhichthecomputationalcostmayincreasewiththe numberof ordersthathave tobesatised.ThisisbecausemoreorderswillG. Schilling, M.C. Georgiadis/Computers & Operations Research 29 (2002) 10411058 1053Fig.3. SolutionofExample3.Table8ComputationalstatisticsforExample5Example2 Optimal FullyrelaxedNodesinB&BCPU(s)Variablesint/contConstraints Numberofrollsorders objectiveobjective Min. Max. UsedOriginal 2590 2630 43 (1 178/5 64 11 15 13Twice 5260 5260 206 (1 336/5 115 21 30 274-times 10,520 10,520 828 3 623/5 208 43 59 5410-times 26,300 26,300 5610 20 1500/5 493 106 146 13420-times 52,600 52,600 6250 31 3519/5 893 248 293 268generallyimplymorerawrollshavingtobeconsideredforcutting,(i.e.,higherJp13p0p24).Thenumberofvariablesandconstraintsinourformulationincreaseslinearlywiththelatter.Inordertostudyhowthecomputationalperformanceofthepresentedformulationvarieswiththenumberoforderedproductrolls,wecarriedoutthreeadditionalexperimentsusingtheoriginaldataofExample2butmultiplyingtheorderedquantities(cf.Table8)byfactorsof2,4,10and15,respectively.TheresultsaresummarizedinTable8.Asexpectedthebiggerthenumberoforderedproductrolls,thelargertheresultingmathematicalproblemandthedi$cultyofitssolution.Forinstance,theoptimalsolutionoftheproblemwithtwicethenumberofordersmakesuseof25di!erentcuttingpatternswhichareautomaticallydeterminedbythealgorithm.However,evenwiththe1054 G. Schilling, M.C. Georgiadis/Computers & Operations Research 29 (2002) 10411058Table10ProductiondatafortheindustrialcasestudyProductrolltype iWidth Bp71(cm) Min.quantityNp13p9p14p71Max.quantityNp13p0p24p71Pricepp71Discountcp3p9p19p2p711 133 10 10 C309 C029155C211 C03 85.5 3 3 C177 C04 101 1 1 C209 C058466C240 C065044C143 C073955C93 C085433C128 C0Table9RawrollcharacteristicsforindustrialcasestudyRolltype Width Bp13p0p24p82Max.spill Bp13p0p24p82!Bp13p9p14p82Max.cuts Np13p0p24p82Cost cp18p15p12p12p821 360cm 40cm 9 C515largestproblem(involvingtheproductionof1340productsheetsfrom268rawrolls),itisstillpossible to determine the optimal solution in less than 1 min of computation on a desktopworkstation.Theintegralitygapalsoremainsverysmallinallexamples.Thesameproblemwasalsosolvedforthecasewheretherearetwodi!erenttypesofrollsavailable(asinExample3)and the total number of orders exceeds 600 sheets. The solution corresponds to an objectivefunction of C 31550 with zero integrality gap. The total number of sheets produced is 660from120rawrolls.Theprobleminvolves1823integervariablesandthesolutionwasobtainedin43CPUs.4.6. Industrial case studyThisisanindustrialcasestudybasedonadailytrim-lossoptimizationproblematMacedonianPaperMills(MEL)S.A.inNorthernGreece.MELisoneofthemajorpaper-producingcompaniesinGreecewithanannualproductionofmorethan100,000tons.Adailyordertypicallyincludes515 di!erent types of product rolls with a total weight of 10100 tons. So far, minimizationof trim-loss has been performed using heuristic-based techniques and human expertise withanaveragetrim-lossof47%dependingontheorder.ThedataforthisproblemaregiveninTables9and10andcorrespondtoapproximatedvalues.AssumingnocostfordisposingofwastetrimandforchangingthecuttingpatternthesolutionisdepictedFig.4.Notethat9rawrollsarerequiredtosatisfytheproduction.Atotalnumberof1100nodeswereexaminedinthebranch-and-boundtreerequiringacomputationaltimeoflessG. Schilling, M.C. Georgiadis/Computers & Operations Research 29 (2002) 10411058 1055Fig.4. Solutionofindustrialcasestudywithoutwastedisposalandcuttingchangecost.Fig.5. Solutionofindustrialcasestudywithwastedisposalandcuttingchangecost.than5CPUs.TheoptimalvalueoftheobjectivefunctionwhichrepresenttheprotisC3105.8and it is equal to the fully relaxed objective. The average trim-loss is 1.126% and representsapproximatelya55%improvementcomparingwiththecurrentpracticebasedonpurelyhumanexpertise.Thesameproblemwasalsosolvedbyassumingthatthecostcoe$cientsfordisposingofwasteandforchangingthecuttingpatternsareequalto0.39and58.8,respectively(seeFig.5).TheoptimalvalueoftheprotisnowC2842whilethevalueofthefullyrelaxedproblemis C3044.Approximately9000nodeswereconsideredrequiringacomputationaltimeof1CPUmin.Itis1056 G. Schilling, M.C. Georgiadis/Computers & Operations Research 29 (2002) 10411058interestingtonotethat,sincethecostforchangingthecuttingpatternistakenintoaccount,onlythreesuchchangestakeplacewhiletheaveragetrim-lossremainsthesamewiththepreviouscase.However,itshouldbeemphasizedthatthetimesavingsincutting,duetosimultaneousminimiz-ationofchangingthecuttingpattern,hassignicantimpactontheprotabilityoftheplant.Thisisbecausetheproductionrateincreasesalmostproportionallywiththereductionoftotalcuttingtime.5. ConclusionsThispaperhaspresentedanewmathematicalformulationfor thedeterminationofoptimalcuttingpatternsinone-dimensionalproblems.Itsmainadvantageoverearlierformulationsliesinitssmallintegralitygapanditsfewervariablesandconstraints.Thisisachievedwithouttheneedtoresorttoapriorigeneratedcuttingpatterns,andthecombinatorialincreaseinproblemsizearisingfromsuchanapproach.TheformulationresultsinMILPproblemsofmodestsizethatarewithinthescopeofcurrentlyavailablecommercialsolvers.Theintegralitygapoftheformulationisgenerallysmall,althoughthedi$cultyofsolutionincreaseswithproblemsinvolvingchangeoverandwastedisposalcosts.Boththeformulationpresentedhereandmostoftheearlieronesreviewedinthispaperareprimarilyconcernedwithensuringthatthevariousordersarefullled.OnlytheworkofWester-lund13actuallyconsidersthetimesatwhichsuchordersaredue.Oneinterestingaspectofthepresentedformulationisthatitexplicitlycharacterizesthesequenceofrollsthathavetobecutin
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 江蘇省無錫市江陰市長壽中學2025屆初三教學情況調(diào)研(二)生物試題含解析
- 西安交通工程學院《體育游戲創(chuàng)編》2023-2024學年第二學期期末試卷
- 四川省成都市2024-2025學年四年級數(shù)學第二學期期末調(diào)研試題含解析
- 證券從業(yè)資格證市場參與者責任試題及答案
- 遼寧工業(yè)大學《建筑設計原理》2023-2024學年第二學期期末試卷
- 武漢海事職業(yè)學院《礦床學研究方法與前沿問題》2023-2024學年第二學期期末試卷
- 離散課件 置換群和子群及其陪集2學習資料
- 九州職業(yè)技術學院《血液與循環(huán)系統(tǒng)醫(yī)學教程》2023-2024學年第二學期期末試卷
- 西藏自治區(qū)日喀則市南木林縣重點達標名校2025屆初三化學試題9月摸底考試試題含解析
- 授信合同書擔保合同書二零二五年
- 幼兒園大班建構(gòu)游戲中幼兒自主學習行為的研究
- 2025年消防文員類面試題及答案
- 重慶市名校聯(lián)盟2024-2025學年高二上學期第一次聯(lián)合考試物理試題(解析版)
- 船舶駕駛培訓虛擬場景構(gòu)建-深度研究
- 手術患者預防跌倒
- 《特斯拉汽車供應鏈管理》課件
- 清華-市場營銷學教案
- 人工智能在智能安防中的應用
- 無人機操控 教學設計公開課教案教學設計課件
- 水上交通工程的施工方案
-
評論
0/150
提交評論