壓敏電阻選用的基本知識.doc_第1頁
壓敏電阻選用的基本知識.doc_第2頁
壓敏電阻選用的基本知識.doc_第3頁
壓敏電阻選用的基本知識.doc_第4頁
壓敏電阻選用的基本知識.doc_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

壓敏電阻選用的基本知識什么是壓敏電阻器及其分類與參數(shù)? 目前市場上壓敏電阻主要分為普通插件壓敏電阻,雷壓敏電阻,和貼片壓敏電阻防普通插件壓敏電阻主要是用于線路過壓保護,和小器件電子產(chǎn)品的防雷過壓保護,片徑普遍在20mm以下,防雷壓敏電阻主要是指片徑在25mm以上的插件壓敏電阻,引線形式一般分為直引線或者電極片方式,其中電極片方式因其結構原因具有更大的流通量,貼片壓敏電阻主要用來作為低壓產(chǎn)品的過壓保護或者ESD防靜電,封裝形式從(02014032)使用在ESD靜電防護上貼片壓敏電阻,特別是信號線的ESD防護需要注意其寄生電容的大小,對于高頻信號選用防靜電壓敏電阻電容量應盡量選小。下面是ESD靜電防護推薦電容量選擇。壓敏電阻器與其他浪涌抑制器比較的優(yōu)勢1 更好的熱特性與硅二極管只有一個P-N結承受浪涌電流不一樣,氧化鋅壓敏電阻器是由數(shù)百萬個P-N結組成,這種結構有更好的能量吸收能力和浪涌承受能力。2.反應速度快壓敏電阻器有與其它的半導體元件類似的動作特性。因為壓敏電阻器的傳導發(fā)生非???,延時只在納秒級的范圍內(nèi),所以能夠滿足任何實際需求。3.過溫條件下有穩(wěn)定的電壓在超過崩潰電壓的情況下,一旦環(huán)境溫度超過正常的工作溫度范圍,齊納二極管的限制電壓會隨著環(huán)境溫度的升高而升高,而壓敏電阻器的限制電壓在超過工作溫度范圍的情況下仍然幾乎保持恒定。當壓敏電阻器的漏電流隨著元件本體溫度的升高而增加時,壓敏電阻器的限制電壓不會隨著溫度的改變而改變。4.電容與齊納二極管相比,壓敏電阻器有更高的電容值,根據(jù)不同的應用領域,對浪涌抑制器的電容值是不同的,在直流電路中,壓敏電阻器的電容既可起到去耦的作用又可以起到抑制瞬時過電壓的雙重作用。5.低成本與二級管相比,壓敏電阻器具有成本低和尺寸小的優(yōu)點。應用介面?zhèn)鬏斔俾噬仙龝r間建議使用容值HDMI 1.3 Data Port 10.2G bps 0.020.03ns 0.15pF USB 3.0 Data Port4.80G bps0.050.06ns0.3pFUSB 2.0 Data Port480M bps0.50.6ns4pFUSB 1.0 Data Port12M bps420ns510 pFWireless Device1.5M bps75300ns510 pFRS232, IrDA1.0115.2 K1us8us10100 pFAudio (Microphone/Sperker)2020K Hz0.05ms5ms101000 pF下面先介紹以下插件壓敏電阻 壓敏電阻器簡稱VSR,是一種對電壓敏感的非線性過電壓保護半導體元件。它在電路中用文字符號“RV”或“R”表示,圖1-21是其電路圖形符號。 壓敏電阻的種類貼片壓敏電阻系列 ESD靜電防護壓敏電阻系列 超低電容ESD靜電防護壓敏電阻05D20D通用壓敏電阻系列主要應用于USB3.0,HDMI接口05D20D 高焦耳壓敏電阻系列25D壓敏電阻系列 32D壓敏電阻系列防雷壓敏電阻系列S型防雷壓敏電阻系列插件壓敏電阻總規(guī)格書 SPD防雷壓敏電阻模塊系列MYL3防雷壓敏電阻系列(一)壓敏電阻器的種類壓敏電阻器可以按結構、制造過程、使用材料和伏安特性分類。1按結構分類 壓敏電阻器按其結構可分為結型壓敏電阻器、體型壓敏電阻器、單顆粒層壓敏電阻器和薄膜壓敏電阻器等。結型壓敏電阻器是因為電阻體與金屬電極之間的特殊接觸,才具有了非線性特性,而體型壓敏電阻器的非線性是由電阻體本身的半導體性質(zhì)決定的。2按使用材料分類 壓敏電阻器按其使用材料的不同可分為氧化鋅壓敏電阻器、碳化硅壓敏電阻器、金屬氧化物壓敏電阻器、鍺(硅)壓敏電阻器、鈦酸鋇壓敏電阻器等多種。3按其伏安特性分類 壓敏電阻器按其伏安特性可分為對稱型壓敏電阻器(無極性)和非對稱型壓敏電阻器(有極性)。(二)壓敏電阻器的結構特性與作用1壓敏電阻器的結構特性 壓敏電阻器與普通電阻器不同,它是根據(jù)半導體材料的非線性特性制成的。圖1-22是壓敏電阻器外形,其內(nèi)部結構如圖1-23所示。普通電阻器遵守歐姆定律,而壓敏電阻器的電壓與電流則呈特殊的非線性關系。當壓敏電阻器兩端所加電壓低于標稱額定電壓值時,壓敏電阻器的電阻值接近無窮大,內(nèi)部幾乎無電流流過。當壓敏電阻器兩端電壓略高于標稱額定電壓時,壓敏電阻器將迅速擊穿導通,并由高阻狀態(tài)變?yōu)榈妥锠顟B(tài),工作電流也急劇增大。當其兩端電壓低于標稱額定電壓時,壓敏電阻器又能恢復為高阻狀態(tài)。當壓敏電阻器兩端電壓超過其最大限制電壓時,壓敏電阻器將完全擊穿損壞,無法再自行恢復。過壓保護器件的選型要點電路保護主要有三種形式:過壓保護、過流保護和過溫保護。選擇適當?shù)碾娐繁Wo器件是實現(xiàn)高效、可靠的電路保護設計之關鍵的第一步,那么,如何合理選擇電路保護器件?不同的保護器件其保護原理也各有不同,選擇的時候應結合其保護原理、工作條件和使用環(huán)境來考慮。本文李工將介紹常用的幾種過壓選型技巧,幫助大家來正確選擇電路保護器件。過壓保護器件(OVP)用于保護后續(xù)電路免受甩負載或瞬間高壓的破壞,常用的過壓保護器件有壓敏電阻、瞬態(tài)電壓抑制器、靜電抑制器和放電管等。過壓保護器件選型應注意以下四個要點:1)關斷電壓Vrwm的選擇。一般關斷電壓至少要比線路最高工作電壓高102)箝位電壓VC的選擇。VC是指在ESD沖擊狀態(tài)時通過TVS的電壓,它必須小于被保護電路的能承受的最大瞬態(tài)電壓3)浪涌功率Pppm的選擇。不同功率,保護的時間不同,如600w(10/1000us);300W(8/20us)4)極間電容的選擇。被保護元器件的工作頻率越高,要求TVS的電容要越小。2壓敏電阻器的作用與應用 壓敏電阻器廣泛地應用在家用電器及其它電子產(chǎn)品中,起過電壓保護、防雷、抑制浪涌電流、吸收尖峰脈沖、限幅、高壓滅弧、消噪、保護半導體元器件等作用。圖1-24是壓敏電阻器的典型應用電路。(三)壓敏電阻器的主要參數(shù)壓敏電阻器的主要參數(shù)有標稱電壓、電壓比、最大控制電壓、殘壓比、通流容量、漏電流、電壓溫度系數(shù)、電流溫度系數(shù)、電壓非線性系數(shù)、絕緣電阻、靜態(tài)電容等。1壓敏電壓: 所謂壓敏電壓,即擊穿電壓或閾值電壓。指在規(guī)定電流下的電壓值,大多數(shù)情況下用1mA直流電流通入壓敏電阻器時測得的電壓值,其產(chǎn)品的壓敏電壓范圍可以從109000V不等。可根據(jù)具體需要正確選用。一般V1mA=1.5Vp=2.2VAC,式中,Vp為電路額定電壓的峰值。VAC為額定交流電壓的有效值。ZnO壓敏電阻的電壓值選擇是至關重要的,它關系到保護效果與使用壽命。如一臺用電器的額定電源電壓為220V,則壓敏電阻電壓值V1mA=1.5Vp=1.51.414220V=476V,V1mA=2.2VAC=2.2220V=484V,因此壓敏電阻的擊穿電壓可選在470480V之間。MYG05K規(guī)定通過的電流為0.1mA,MYG07K、MYG10K、MYG14K、MYG20K標稱電壓是指通過1mA直流電流時,壓敏電阻器兩端的電壓值。2最大允許電壓(最大限制電壓):此電壓分交流和直流兩種情況,如為交流,則指的是該壓敏電阻所允許加的交流電壓的有效值,以ACrms表示,所以在該交流電壓有效值作用下應該選用具有該最大允許電壓的壓敏電阻,實際上V1mA與ACrms間彼此是相互關聯(lián)的,知道了前者也就知道了后者,不過ACrms對使用者更直接,使用者可根據(jù)電路工作電壓,可以直接按ACrms來選取合適的壓敏電阻。在交流回路中,應當有:min(U1mA) (2.22.5)Uac,式中Uac為回路中的交流工作電壓的有效值。上述取值原則主要是為了保證壓敏電阻在電源電路中應用時,有適當?shù)陌踩6?。對直流而言在直流回路中,應當有:min(U1mA) (1.62)Udc,式中Udc為回路中的直流額定工作電壓。在交流回路中,應當有:min(U1mA) (2.22.5)Uac,式中Uac為回路中的交流工作電壓的有效值。上述取值原則主要是為了保證壓敏電阻在電源電路中應用時,有適當?shù)陌踩6?。在信號回路中時,應當有:min(U1mA)(1.21.5)Umax,式中Umax為信號回路的峰值電壓。壓敏電阻的通流容量應根據(jù)防雷電路的設計指標來定。一般而言,壓敏電阻的通流容量要大于等于防雷電路設計的通流容量。3通流容量: 所謂通流容量,即最大脈沖電流的峰值是環(huán)境溫度為25情況下,對于規(guī)定的沖擊電流波形和規(guī)定的沖擊電流次數(shù)而言,壓敏電壓的變化不超過 10時的最大脈沖電流值。為了延長器件的使用壽命,ZnO壓敏電阻所吸收的浪涌電流幅值應小于手冊中給出的產(chǎn)品最大通流量。然而從保護效果出發(fā),要求所選用的通流量大一些好。在許多情況下,實際發(fā)生的通流量是很難精確計算的。簡單的講-通流容量也稱通流量,是指在規(guī)定的條件(以規(guī)定的時間間隔和次數(shù),施加標準的沖擊電流)下,允許通過壓敏電阻器上的最大脈沖(峰值)電流值。一般過壓是一個或一系列的脈沖波。實驗壓敏電阻所用的沖擊波有兩種,一種是為8/20s波,即通常所說的波頭為8s波尾時間為20s的脈沖波,另外一種為2ms的方波,如下圖所示: 4最大限制電壓: 最大限制電壓是指壓敏電阻器兩端所能承受的最高電壓值,它表示在規(guī)定的沖擊電流Ip通過壓敏電阻時次兩端所產(chǎn)生的電壓此電壓又稱為殘壓,所以選用的壓敏電阻的殘壓一定要小于被保護物的耐壓水平Vo,否則便達不到可靠的保護目的,通常沖擊電流Ip值較大,例如2.5A或者10A,因而壓敏電阻對應的最大限制電壓Vc相當大,例如MYG7K471其Vc=775(Ip=10A時)。5最大能量(能量耐量): 壓敏電阻所吸收的能量通常按下式計算W=kIVT(J)其中I流過壓敏電阻的峰值 V在電流I流過壓敏電阻時壓敏電阻兩端的電壓 T電流持續(xù)時間 k電流I的波形系數(shù)對: 2ms的方波 k=1 8/20s波 k=1.4 10/1000s k=1.4 壓敏電阻對2ms方波,吸收能量可達330J每平方厘米;對8/20s波,電流密度可達2000A每立方厘米,這表明他的通流能力及能量耐量都是很大的 一般來說壓敏電阻的片徑越大,它的能量耐量越大,耐沖擊電流也越大,選用壓敏電阻時還應當考慮經(jīng)常遇到能量較小、但出現(xiàn)頻率次數(shù)較高的過電壓,如幾十秒、一兩分鐘出現(xiàn)一次或多次的過電壓,這時就應該考慮壓敏電阻所能吸收的平均功率。6電壓比: 電壓比是指壓敏電阻器的電流為1mA時產(chǎn)生的電壓值與壓敏電阻器的電流為0.1mA時產(chǎn)生的電壓值之比。7額定功率: 在規(guī)定的環(huán)境溫度下所能消耗的最大功率。8最大峰值電流 一次:以8/20s標準波形的電流作一次沖擊的最大電流值,此時壓敏電壓變化率仍在10%以內(nèi)。2次:以8/20s標準波形的電流作兩次沖擊的最大電流值,兩次沖擊時間間隔為5分鐘,此時壓敏電壓變化率仍在10%以內(nèi)。9殘壓比: 流過壓敏電阻器的電流為某一值時,在它兩端所產(chǎn)生的電壓稱為這一電流值為殘壓。殘壓比則的殘壓與標稱電壓之比。10漏電流: 漏電流又稱等待電流,是指壓敏電阻器在規(guī)定的溫度和最大直流電壓下,流過壓敏電阻器的電流。11電壓溫度系數(shù): 電壓溫度系數(shù)是指在規(guī)定的溫度范圍(溫度為2070)內(nèi),壓敏電阻器標稱電壓的變化率,即在通過壓敏電阻器的電流保持恒定時,溫度改變1時壓敏電阻兩端的相對變化。12電流溫度系數(shù): 電流溫度系數(shù)是指在壓敏電阻器的兩端電壓保持恒定時,溫度改變1時,流過壓敏電阻器電流的相對變化。 13電壓非線性系數(shù): 電壓非線性系數(shù)是指壓敏電阻器在給定的外加電壓作用下,其靜態(tài)電阻值與動態(tài)電阻值之比。14絕緣電阻: 絕緣電阻是指壓敏電阻器的引出線(引腳)與電阻體絕緣表面之間的電阻值。15靜態(tài)電容: 靜態(tài)電容是指壓敏電阻器本身固有的電容容量。-(0k 3$9eU 2 壓敏電阻器的應用原理 B5_|( 壓敏電阻器是一種具有瞬態(tài)電壓抑制功能的元件,可以用來代替瞬態(tài)抑制二極管、齊納二極管和電容器的組合。壓敏電阻器可以對IC及其它設備的電路進行保護,防止因靜電放電、浪涌及其它瞬態(tài)電流(如雷擊等)而造成對它們的損壞。使用時只需將壓敏電阻器并接于被保護的IC或設備電路上,當電壓瞬間高于某一數(shù)值時,壓敏電阻器阻值迅速下降,導通大電流,從而保護IC或電器設備;當電壓低于壓敏電阻器工作電壓值時,壓敏電阻器阻值極高,近乎開路,因而不會影響器件或電器設備的正常工作。 eenWWl 壓敏電阻器的應用廣泛,壓敏電阻主要可用于直流電源、交流電源、低頻信號線路、帶饋電的天饋線路。從手持式電子產(chǎn)品到工業(yè)設備,其規(guī)格與尺寸多種多樣。隨著手持式電子產(chǎn)品的廣泛使用,尤其是手機、手提電腦、PDA、數(shù)字相機、醫(yī)療儀器等,其電路系統(tǒng)的速度要求更高,并且要求工作電壓更低,這就對壓敏電阻器提出了體積更小、性能更高的要求。因此,表面組裝的壓敏電阻器元件也就開始大量涌現(xiàn),而其銷售年增長率要高于有引線的壓敏電阻器一倍多。 +bKzzB 預計2002年壓敏電阻器的市場增長率為13,其中,多層片式壓敏電阻器市場增長率為2030,徑向引線產(chǎn)品增長率為510。需求主要來自于電源設備,包括DC電源設備、不間斷電源,以及新的消費類電子產(chǎn)品,如數(shù)字音頻/視頻設備、視頻游戲,數(shù)字相機等。片式壓敏電阻器已占美國市場銷售總額的4045。(0402)尺寸的片式壓敏電阻器最受歡迎。0201尺寸的產(chǎn)品尚未上市。AVX公司的0402片式壓敏電阻器有5.6V、9V、14V和18V等幾種電壓范圍的產(chǎn)品,它們的額定功率為50mJ,典型電容值范圍從90pF(18V的產(chǎn)品)360pF(5.6V的產(chǎn)品)。MaidaDevelopment公司也生產(chǎn)片式系列的壓敏電阻器,但目前只推出了非標準尺寸的產(chǎn)品,1210、1206、0805、0603和0402的產(chǎn)品正在試產(chǎn)。 eBfyQu Littelfuse公司在2000年底前推出0201的產(chǎn)品。AVX和Littelfuse公司已推出電壓抑制器陣列,如AVX推出的Multiguard系列四聯(lián)多層陶瓷瞬態(tài)電壓抑制器陣列(即壓敏電阻器陣列)已經(jīng)被市場接納??晒?jié)省50的板上空間,75的生產(chǎn)裝配成本。Multiguad系列采用1206型規(guī)格。其中有一種雙聯(lián)元件采用0805規(guī)格,工作電壓有5.6V、9V、14V和18V等幾種,額定功率為0.1J。AVX公司推出Transfeed多層陶瓷瞬態(tài)電壓抑制器。該產(chǎn)品綜合了公司Transguard系列壓敏電阻器和Feedthru系列電容器/濾波器的功能。采用0805規(guī)格。該組件具有性能優(yōu)勢,更快的導通時間(或稱響應時間,在200ps250ps之間)和更小的并行系數(shù)。 6zX0 Littelfuse制造的MLN浪涌陣列組件1206規(guī)格,內(nèi)裝4只多層壓敏電阻器。該產(chǎn)品的ESD達到IEC67100042第四級水平。其主要特性包括:感抗(1nH),相鄰通道串擾典型值50dB(頻率1MHz時),在額定電壓工作狀態(tài)下,漏電流為5A,工作電壓高達18V,電容值可由用戶指定。這種MLN貼片組件可用于板級ESD保護,應用領域包括手持式產(chǎn)品、電腦產(chǎn)品、工業(yè)及醫(yī)療儀器等。 lZ prD= EPCOS公司推出了T4NA230XFV集成浪涌抑制器,內(nèi)含兩只壓敏電阻器和一種短路裝置。該產(chǎn)品用于電信中心局和用戶線一側的通信設備保護。 PS;6g$NM = 9q(%s 3.壓敏電阻的選用 1、氧化鋅壓敏電阻器應用原理壓敏電阻是一種限壓型保護器件。利用壓敏電阻的非線性特性,當過電壓出現(xiàn)在壓敏電阻的兩極間,壓敏電阻可以將電壓鉗位到一個相對固定的電壓值,從而實現(xiàn)對后級電路的保護。壓敏電阻的主要參數(shù)有:壓敏電壓、通流容量、結電容、響應時間等。 壓敏電阻的響應時間為ns級,比空氣放電管快,比TVS管稍慢一些,一般情況下用于電子電路的過電壓保護其響應速度可以滿足要求。壓敏電阻的結電容一般在幾百到幾千pF的數(shù)量級范圍,很多情況下不宜直接應用在高頻信號線路的保護中,應用在交流電路的保護中時,因為其結電容較大會增加漏電流,在設計防護電路時需要充分考慮。壓敏電阻的通流容量較大,但比氣體放電管小。 壓敏電阻器與被保護的電器設備或元器件并聯(lián)使用。當電路中出現(xiàn)雷電過電壓或瞬態(tài)操作過電壓Vs時,壓敏電阻器和被保護的設備及元器件同時承受Vs,由于壓敏電阻器響應速度很快,它以納秒級時間迅速呈現(xiàn)優(yōu)良非線性導電特性(見圖3中擊穿區(qū)),此時壓敏電阻器兩端電壓迅速下降,遠遠小于Vs,這樣被保護的設備及元器件上實際承受的電壓就遠低于過電壓Vs,從而使設備及元器件免遭過電壓的沖擊。2、氧化鋅壓敏電阻器壓敏電壓的選擇 根據(jù)被保護電源電壓選擇壓敏電阻器的規(guī)定電流下的電壓V1mA。一般選擇原則為:對于直流回路:V1mA2.0VDC對于交流回路:V1mA2.2V有效值 特別指出對于壓敏電阻壓敏電壓的選擇標準是要高于供電電壓,在能夠滿足可以保護需要保護器件的的同時,盡可能選擇壓敏電壓高的壓敏電阻,這樣不僅可以保護器件,也能提高壓敏電阻的使用壽命。比如要保護的器件耐壓為Vdc=550Vdc,器件的工作電壓V=300Vdc,那么我們選擇壓敏電阻就應該是壓敏電壓為470V的壓敏電阻,壓敏電壓范圍是(423-517),壓敏電壓最大負誤差470-47=423Vdc大于器件的供電電壓300Vac,最大正誤差為470+47=517Vdc小于器件的耐壓550Vdc。選用時還必須注意:(1)必須保證在電壓波動最大時,連續(xù)工作電壓也不會超過最大允許值,否則將縮短壓敏電阻的使用壽命;(2)在電源線與大地間使用壓敏電阻時,有時由于接地不良而使線與地之間電壓上升,所以通常采用比線與線間使用場合更高標稱電壓的壓敏電阻器。3、通流量的選取 通常產(chǎn)品給出的通流量是按產(chǎn)品標準給定的波形、沖擊次數(shù)和間隙時間進行脈沖試驗時產(chǎn)品所能承受的最大電流值。而產(chǎn)品所能承受的沖擊數(shù)是波形、幅值和間隙時間的函數(shù),當電流波形幅值降低50時沖擊次數(shù)可增加一倍,所以在實際應用中,壓敏電阻所吸收的浪涌電流應小于產(chǎn)品的最大通流量。4、應用 圖1所示是采用壓敏電壓器進行電路浪涌和瞬變防護時的電路連接圖。對于壓敏電阻的應用連接,大致可分為四種類型: 第一種類型是電源線之間或電源線和大地之間的連接,如圖1(a)所示。作為壓敏電阻器,最具有代表性的使用場合是在電源線及長距離傳輸?shù)男盘柧€遇到雷擊而使導線存在浪涌脈沖等情況下對電子產(chǎn)品起保護作用。一般在線間接入壓敏電阻器可對線間的感應脈沖有效,而在線與地間接入壓敏電阻則對傳輸線和大地間的感應脈沖有效。若進一步將線間連接與線地連接兩種形式組合起來,則可對浪涌脈沖有更好的吸收作用。 第二種類型為負荷中的連接,見圖1(b)。它主要用于對感性負載突然開閉引起的感應脈沖進行吸收,以防止元件受到破壞。一般來說,只要并聯(lián)在感性負載上就可以了,但根據(jù)電流種類和能量大小的不同,可以考慮與RC串聯(lián)吸收電路合用。 第三種類型是接點間的連接,見圖1(c)。這種連接主要是為了防止感應電荷開關接點被電弧燒壞的情況發(fā)生,一般與接點并聯(lián)接入壓敏電阻器即可。第四種類型主要用于半導體器件的保護連接,見圖1(d)。這種連接方式主要用于可控硅、大功率三極管等半導體器件,一般采用與保護器件并聯(lián)的方式,以限制電壓低于被保護器件的耐壓等級,這對半導體器件是一種有效的保護。 5、選型原則 如果電器設備耐壓水平Vo較低,而浪涌能量又比較大,則可選擇壓敏電壓V1mA較低、片徑較大的壓敏電阻器;如果Vo較高,則可選擇壓敏電壓V1mA較高的壓敏電阻器,這樣既可以保護電器設備,又能延長壓敏電阻使用壽命。 壓敏電阻器主要應用于各種電子產(chǎn)品的過電壓保護電路中,它有多種型號和規(guī)格。所選壓敏電阻器的主要參數(shù)(包括標稱電壓、最大連續(xù)工作電壓、最大限制電壓、通流容量等)必須符合應用電路的要求,尤其是標稱電壓要準確。標稱電壓過高,壓敏電阻器起不到過電壓保護作用,標稱電壓過低,壓敏電阻器容易誤動作或被擊穿。 6、氧化鋅壓敏電阻器的使用方法 壓敏電阻器是一種無極性過電壓保護元件,無論是交流還是直流電路,只需將壓敏電阻器與被保護電器設備或元器件并聯(lián)即可達到保護設備的目的(如圖4所示) 當過電壓幅值高于規(guī)定電流下的電壓,過電流幅值小于壓敏電阻器的最大峰值電流時(若無壓敏電阻器足以使設備元器件破壞),壓敏電阻器處于擊穿區(qū),可將過電壓瞬時限制在很低的幅值上,此時通過壓敏電阻器的浪涌電流幅值不大(100A/cm2),不足以對壓敏電阻器產(chǎn)生劣化;當過電壓幅值很高時,壓敏電阻器將過電壓限制在較低的水平上(小于設備的耐壓水平),同時通過壓敏電阻器的沖擊電流很大,使壓敏電阻器性能劣化即將失效,這時通過熔斷器的電流很大,熔斷器斷開,這樣既可使電器設備、元器件免受過電壓沖擊,也可避免由于壓敏電阻器的劣化擊穿造成線路L-N、L-PE之間短路(推薦的熔斷器規(guī)格見表1)。 壓敏電阻器在電路的過電壓防護中,如果正常工作在圖3的預擊穿區(qū)和擊穿區(qū),理論上是不會損壞的。但由于壓敏電阻器要長期承受電源電壓,電路中暫態(tài)過電壓、超能量過電壓隨機的不斷沖擊及吸收電路儲能元件釋放能量,因此,壓敏電阻器也是會損壞的,它的壽命根據(jù)所在電路經(jīng)受的過電壓幅值和能量的不同而不同。在電子鎮(zhèn)流器和節(jié)能燈過壓保護的壓敏電阻,一般小于20W選用MYG07K系列,30W-40W一般選用MYG10系列的壓敏電阻做過壓保護 一、壓敏電阻的連接線問題將壓敏電阻接入電路的連接線要足夠粗,推薦的連接線的尺寸注:接地線為5.5 mm2以上連接線要盡可能短,且走直線,因為沖擊電流會在連接線電感上產(chǎn)生附加電壓,使被保護設備兩端的限制電壓升高。壓敏電阻通流量600A(6002500)A(25004000)A(400020K)A導線截面積 0.3 mm2 0.5 mm2 0.8 mm2 2 mm2例如:若壓敏電阻MY兩端各有3 cm長的接線,它的電感量L大體為18 nH,若有10 KA的8/20沖擊電流流入壓敏電阻,把電流的升速看作10KA / 8s,則引線電感上的附加電壓UL1、UL2大體為UL1= UL2=L(di/dt)=1810-9( 10103 / 810-6 )=22.5 V這就使限制電壓增高了45V。二、壓敏電阻的串聯(lián)和配對壓敏電阻可以很簡單地串聯(lián)使用。將兩只電阻體直徑相同(通流量相同)的壓敏電阻串聯(lián)后,漆壓敏電壓、持續(xù)工作電壓和限制電壓相加,而通流量指標不變。例如在高壓電力避雷器中,要求持續(xù)工作電壓高達數(shù)千伏,數(shù)萬伏,就是將多個ZnO壓敏電阻閥片迭和起來(串聯(lián))而得到的。壓敏電阻可以并聯(lián),目的是獲得更大的通流量,或者在沖擊電流峰值一定的條件下減小電阻體中的電流密度,以降低限制電壓。當要求獲得極大的通流量 例如8/20,(50200)KA ,且壓敏電壓又比較低(例如低于200V)時,電阻體的直徑 / 厚度比太大,在制造技術上有困難,且隨著電阻體直徑的加大,電阻體的微觀均勻性變差,因此通流量不可能隨電阻體面積成比例地增大。這時用較小直徑的電阻片并聯(lián)可能是個更合理的方法。由于高非線性,壓敏電阻片的并聯(lián)需要特別小心謹慎,只有經(jīng)過仔細配對,參數(shù)相同的電阻片相并聯(lián),才能保證電流在各電阻片之間均勻分配。針對這種需求,本公司專門為用戶提供配對的電阻片。此外,縱向連結的幾個壓敏電阻器,使用經(jīng)過配對的參數(shù)一致的壓敏電阻器后,當沖擊侵入時,出現(xiàn)在橫向的電壓差可以很小。在這種情況下,配對也是有意義的。三、壓敏電阻與氣體放電器件的串聯(lián)和并聯(lián)壓敏電阻可以與氣體放電管、空氣隙、微放電間隙等氣體放電器件相串聯(lián)(圖10.5a),這個串聯(lián)組合的正常工作要滿足兩個基本條件:、系統(tǒng)電壓上限值應低于氣體放電器件G的直流擊穿電壓;、G點火后在系統(tǒng)電壓上限值下,壓敏電阻MY中的電流應小于G的電弧維持電流,以保證G的熄弧。這種串聯(lián)組合具有電容量小,工作頻率高;漏電流極小安全性好;以及不存在壓敏電阻MY在系統(tǒng)電壓下老化的問題,因而可靠性高等優(yōu)點,但同時也有氣體放電器件相應慢所引起的讓通電壓問題。壓敏電阻也可與氣體放電管并聯(lián),以降低氣體放電管的沖擊點火電壓。雷電與防雷誤區(qū) 隨著電子技術的發(fā)展,電子器件已進入大規(guī)模集成電路時代。電子設備的功能得以改善,運行的可靠性不斷提高,然而防雷的能力卻大大地降低了。現(xiàn)在,每年遭到雷擊而造成的損失數(shù)以億元計,所以研究保護微電子設備免遭雷電危害已成為一個重要課題。雖然近兩個世紀出現(xiàn)了很多的防雷方法和派生出很多防雷器件,但由于對雷電的了解不全面或?qū)ζ骷阅艿钠姡貌坏筋A期的效果。由于不得其法,浪費了大量資財。本文闡述雷電的成因并指出當前防雷誤區(qū),力圖打破似乎凍結的防雷方法的規(guī)范,以求防雷研究的進展。1 雷電的形成1.1 自然界的自由電荷 在電子學中,當人們研究電的現(xiàn)象時發(fā)現(xiàn)構成物質(zhì)的微單元的原子中,圍繞原子核高速旋轉的外層電子易受外界條件的影響而逸出,使原子缺少電子或者自由電子單獨存在而對外部形成電場的帶電現(xiàn)象。 金屬導體和絕緣體的內(nèi)部結構區(qū)別在于:金屬導體中的自由電子內(nèi)部引力較弱,而絕緣體內(nèi)部引力較強。所以在金屬導體環(huán)路中,如加上一種使自由電子逸出的力量(這個力量我們叫電壓),由于環(huán)路中電壓的存在,金屬中的電子產(chǎn)生位移式的流動,不過金屬內(nèi)的正負電荷量的絕對值是相等的,一旦去掉加在環(huán)路中的電壓,環(huán)路立即處于中性,沒有電子的流動,不再產(chǎn)生電場。 對非環(huán)路的金屬,比如兩塊相互平行的金屬板,它們之間以空氣為介質(zhì),如在這兩塊板上加上電壓,金屬導體中的電子按同性相斥,異性相吸規(guī)律,使電子向一面流動,產(chǎn)生電場,這種現(xiàn)象稱為靜電現(xiàn)象。這時對某一塊金屬來說,它們電荷的正負電量的絕對值就不相等了,這時如去掉加在其上的電壓,它不像環(huán)路那樣呈現(xiàn)電中性,卻仍保持帶電性質(zhì),仍然有電場的存在,但是隨著時間的推移,這個電場會自然消失。正統(tǒng)的理論解釋為A片金屬的電子通過介質(zhì)層逐步釋放給B片金屬的結果,這是以環(huán)路電流理論為依據(jù)的論點。但是,如果將兩塊已充了電的金屬塊瞬間拉開到不可能從A向B釋放電子的距離,兩塊金屬會不會永久性地帶電呢?事實告訴我們,隨著時間的推移帶電現(xiàn)象也隨之消失,這是什么原因呢?教科書上提到的摩擦起電現(xiàn)象,即絕緣體相互摩擦后,絕緣體出現(xiàn)帶電現(xiàn)象,在這種情況下,是否需要兩件物體再接觸一下才能使絕緣體呈現(xiàn)帶電中性呢?事實并非如此,這些懸于空間的帶電物體,不管帶電性質(zhì)如何,只要與大地接觸一下,帶電現(xiàn)象就立即消失。因此這種現(xiàn)象告訴我們,在自然界中,A給B的電荷,A不必從B收回,B多余的電荷也不一定向A輸出,這與金屬環(huán)路電流理論是不相同的。同時可以推定,自然空間(包括大地在內(nèi))各種物體電荷的擁有量的絕對值是不相等的,就是說自然界擁有巨大的自由電荷量。 自然界之所以擁有大量的自由電荷,從電勢形成概念而言,有電磁效應、化學效應、摩擦起電及射線等諸方面原因,現(xiàn)代科學可以做到測量人腦電流的運動來判斷腦的活動。自然界的自由電荷的成因,用能量守恒定律來規(guī)范,可以這樣說:凡有物質(zhì)運動的地方(包括宇宙射線),就會產(chǎn)生電子運動并形成自由電荷,這是一種能轉換成另一種能的變換過程,所以自然界物質(zhì)的運動是自然界產(chǎn)生自由電荷的根源。 所謂自然界,包括天空與大地這樣廣闊的空間,這個空間不存在電荷的中性,就大地而言,我們稱之為零電位,但大地本身因物質(zhì)的運動其電位并非為零,它擁有大量的自由電荷,我們可以做一個簡單的小實驗:用一副耳機,或者一只毫伏表,兩根同金屬性質(zhì)的金屬棒,在一定距離內(nèi)分別將金屬棒插入地下,棒與棒之間用耳機可以聽到地電荷的噪音,如果接上毫伏表發(fā)現(xiàn)有電壓指示,而這種指示不因放電時間的加長而消失,單線傳輸?shù)碾娫捑€路,電話的耳機里的噪音也連續(xù)不斷,這些都說明大地自由電荷的存在。當然用上述方法無法測量天空自由電荷,但是我們用長波和中波收音機收聽電臺時,噪音干擾也連續(xù)不斷,以此證明,天空中有不斷的放電現(xiàn)象,說明天空中存在豐富的自由電荷,同時又能形成一定強度的電場放電。 這里反復地論證自然界存在自由電荷,其目的是要解釋雷電產(chǎn)生的根源,因為教科書上的環(huán)路理論不能對雷電成因進行解釋。1.2 雷電場的產(chǎn)生 雷電的能量是巨大的,在人類活動中,任何單一的電站所發(fā)出的電能不可能產(chǎn)生一次雷電所釋放的能量,那么這樣大的能量積聚是怎樣形成的呢? 上面說過,由于物質(zhì)的運動自然界產(chǎn)生巨大的自由電荷,當然這些自由電荷是產(chǎn)生雷電的根源。從電子學中得知,要形成一個強大的電場,一定是其中一方是同性質(zhì)電荷的積累,但是在天空中空氣是絕緣的,同性質(zhì)的電荷又相斥,它們不可能積聚在一起,不可能形成能量的集中,天空中的物質(zhì)受氣流、宇宙射線的影響而產(chǎn)生自由電荷,且不斷增加,在大氣層的擠壓下向太空高層運動,形成一個電離層,這個電離層是含單性電荷的電子層,其電場的能量是不可估量的。 當大氣層中出現(xiàn)潮濕的空氣,在上升階段又遇冷空氣結成水狀云塊時,由于云塊可看成是一個整體的導體,在電離層電場力的作用下,云層中的電子推向面向地的一端,雖然云塊正負電荷的絕對值相等,但實際上形成了一個靜電場,在晴天,云塊遠距地面而且云塊與大地間潮濕空氣較稀,它們之間介質(zhì)絕緣程度較高,不易發(fā)生擊穿放電現(xiàn)象,但是在雨天,特別是熱雨季節(jié),由于云層下降,空氣潮濕,在此條件下帶電云塊擊穿空氣向大地放電而形成雷電。 雷電不單純是空間對地放電,往往在空間也會形成雷電。這是因為帶電云塊在空間的位置較高,當?shù)孛娴某睗窨諝饧彼偕仙龝r,它與帶電云塊形成的電場在空間放電,形成高空雷電。 上面說過,云塊受電離層電場力的作用產(chǎn)生靜電現(xiàn)象,這些云塊向地放電以后,其本身產(chǎn)生電離即云塊的正負電量的絕對值不相等,形成帶電現(xiàn)象,帶電云塊隨著氣流運動與另一云塊形成電場,當它們逐漸接近時產(chǎn)生放電現(xiàn)象是形成空中雷的原因,當我們觀察雷電在空間放電時,往往是一次接一次有連續(xù)不斷的感覺。1.3 雷電過程 雷電過程也是靜電理論中闡明的電場中介質(zhì)擊穿過程。上面說過雷電的成因,雷電是帶電云塊在運動過程中放電的現(xiàn)象,其放電位置不是固定的,但有一定固定的條件。比如電場中介質(zhì)的厚度、絕緣系數(shù)、氣體溫度和地表導電系數(shù)都影響雷擊地點。我們常說的多雷區(qū)應該說該地區(qū)具備上述諸因素中的幾種。但是有人認為雷電是在本位置產(chǎn)生的,這是一種誤解。道理很簡單:因為在本地區(qū)又有什么力量積聚這么大的能量呢?應該是帶電云塊在運動過程中放電形成雷電,當然在帶電云塊的作用下,在什么地方放電與地面的前述條件有關,以地貌而言相對高度越高應該說越易遭雷擊,這里指的是高建筑物、高山及地表凸出處,但也不一定就在這些地方出現(xiàn)雷擊,因為在電場中介質(zhì)參數(shù)不單純是指厚度,還取決于絕緣系數(shù)即環(huán)境的溫度和氣體的溫度。我們發(fā)現(xiàn),往往雷擊點不在山頂而在平川,這是因為那里的潮濕空氣和氣溫使電場介質(zhì)的絕緣低于高山而遭雷擊。另外,地表的導電也有影響,良好的導電地質(zhì)比難以導電的地質(zhì)所產(chǎn)生的雷電場就大得多,所以易導電的地質(zhì)易于引雷。 雷電場是一個巨大的靜電場,是人類不可建造的。巨大的電場面積和所積聚的巨大能量是不可估量而又不可測量的,人們往往在雷電以后,從被雷擊的物體破壞的程度估計它的大小。對于雷電流用數(shù)以億安計的詞來形容是不過份的,雷電場在放電過程中與靜電場放電有相似的地方,但也有差別,人為形成的靜電場其儲能是極為有限的,所以它在放電過程中放電電流是從最大值逐步減弱,而雷電場就不同,由于儲能巨大,在放電時因通過空間的阻力開始階段不可能使電場減弱,而是在放電時空氣加熱以后放電電流達到最大值,再隨著電場的減弱放電電流隨之下降。所以雷擊過程中雷電流是從小到大再減弱,就電的性質(zhì)而言,由于它是一個靜電場的放電,電流的方向是不變的,所形成的是一個幅度巨大的脈動直流電流。 所以雷電流的主要分量是直流分量,但脈動部分和雷電流與空氣及地接觸時產(chǎn)生的熱騷動形成的諧波和高次諧波的電磁能量也相當大,所以雷電過程中的交流分量也不可小看,雷擊過程中,從低頻直至米波段這樣寬的頻譜均受不同程度的干擾,從諧波理論得知,低頻段所受干擾較為嚴重。 如果我們將地面的物體置于某一位置,雷電對這一物體產(chǎn)生的干擾可分為感應干擾和直接干擾。某一物體不在雷電場內(nèi),但由于雷電在放電過程,它所產(chǎn)生的強大電磁波使這一物體受電磁波的沖擊,這樣的雷我們稱“感應雷”,當某一物體置于雷電場內(nèi),而且物體又作為雷電流的導電體,巨大的電流通過該物體使物體遭到嚴重破壞,這種直接置于雷電場受到雷電的沖擊,我們稱這種雷為“直接雷”。以現(xiàn)代微電子來說,不管感應雷還是直接雷對微電子器件都會造成永久性的破壞。2 防雷的誤區(qū)2.1 避雷針與避雷器 19世紀后葉,人們發(fā)現(xiàn)金屬導體尖端放電現(xiàn)象。避雷針是典型的利用尖端放電原理做成的防雷裝置,在被保護物體上架設一根金屬針,并將它與地相通。它是怎樣避雷的呢?解釋是這樣:當避雷針置于空中對地這個雷電場時,由于避雷針與大地有良好的接觸,此時電場能量通過避雷針放電,雷電場消失,使它不發(fā)生大電流的放電,從而起到消雷的作用。但是這種解釋也有不清楚的地方,即位于強大的雷電場下的避雷針,能否按人們的意愿慢慢地放電使雷電場消失呢?從電學原理也說不通。因為強大的雷電場就像炸藥缺少引信一樣,避雷針所指的空間就像引信,由于避雷針的引導會一觸即發(fā)。因為其高度和良好的接地條件要優(yōu)于其它位置,同時尖端形成的電場又大于其它地方,所以強大的雷電場以避雷針為中心放電區(qū),如果說避雷針本身不具有電抗,接地電阻又達到零值,數(shù)以億安計的雷電流可以順利通過它,不會形成熱效應和雷電位,便可達到避雷目的。但避雷針本身和引線存在著電抗,接地電阻不可能為零,所以雷擊過程中,它沒有避雷能力,只起到雷擊位置的引導作用。人們認識到這一點,但對避雷針有所偏愛或者說對雷電成因不理解,他們將雷電解釋為是本位置產(chǎn)生的,就是說講不清楚的原因,在避雷針設置的地方和相對的空間形成電場,由于避雷針逐步放電而使這一電場建立不起來,所以避雷針起到消雷的作用。事實上從20世紀以來人們對避雷針的避雷作用公開地提出了質(zhì)疑,因為避雷針成為引雷針的事件屢見不鮮。 然而避雷針在下述情況能發(fā)揮一定作用,當帶電云塊的電量很小,而且又遠離地面與大地形成不太強的電場時,避雷針對其電場逐步放電達到消除這個電場的目的。地面有些物體與大地是絕緣的,比如木質(zhì)結構的古建筑物,在感應雷和直接雷的作用下,可能會帶上靜電,由于靜電的存在可能引起火災,如果在這些物體上架設避雷針,就可使建筑物與大地形成等電位,避免這些物體在雷電場作用下帶靜電。 但是,現(xiàn)代的建筑物幾乎都是鋼筋水泥結構的,它與大地已形成了等電位,顯然架設避雷針是多余的。但是現(xiàn)在的建筑物仍沿襲老規(guī)矩架設避雷針,其原因很明顯,主要是責任和規(guī)范問題。說句實話,不設避雷針誰能保證該建筑物不受雷擊?安裝了避雷針而遭雷擊是老天爺?shù)氖?,責任不在人?幾乎在出現(xiàn)避雷針的同時,在輸電線上人們利用尖端放電現(xiàn)象發(fā)明了尖端放電避雷器,兩個尖端所形成的電場在一定間距內(nèi)放電,這個間距的大小可以設定在一定電壓下放電,于是將它安裝在輸電線上,使雷電的超壓值通過此放電器引導入地達到避雷的目的。20世紀初葉,輸電線上普遍安裝了形似羊角的羊角避雷器,但是由于羊角避雷器在泄放雷電過程中,空氣被加熱引起電弧不斷,雖然有引導電弧上升的形態(tài),但雷電過后,電路不能正常供電。于是在尖端放電的基礎上加了對電壓敏感的電阻元件,此元件在超過額定電壓時呈現(xiàn)的電阻小,反之阻值增大,對過壓引起的電流起到開關作用,這種避雷器稱“閥型避雷器”。按壓敏原理又派生出氣敏和氧化鋅器件。 不管羊角型、閥型、氣敏和壓敏避雷器,它們的結構企圖達到一個目的:使輸電線上的過壓值,通過這些器件,箝位在人為的整定值上,從而使用戶設備的端電壓不超過額定電壓,確保用戶設備的安全。2.2 避雷器件用在不同電路中的反應 現(xiàn)在形形色色的避雷器,如果單純地就其本身結構來判斷是否有防雷作用是不全面的,還要看這些器件用在什么電路。下面介紹幾種電路在雷電過程中的反應: (1)高壓輸電線雷電勢的分布與過渡 高壓輸電線是三相三線制,線對地是絕緣的。不管輸電線受感應雷或直接雷影響,在三線中的雷電勢的電位和相位均是相同的,線與線之間的電位差等于零。所以當雷擊高壓輸電線時,主要危及輸電線及其在線路上運行的變壓器的對地絕緣。在三線的輸電線中,由于各種原因三線對地絕緣系數(shù)不盡相同,特別是高壓側的避雷器絕緣性能更難求得一致,所以在雷擊過程中會出現(xiàn)一線首先向地放電現(xiàn)象。由于一線放電,該線雷電位迅速下降,此時另外二線的雷電位就高于放電線,線與線之間就出現(xiàn)了雷電位差,這個電壓通過變壓器高壓側繞組,低壓側(即變壓器副邊)就由于電磁感應出現(xiàn)雷電壓,這個電壓很高時就危及用戶設備的安全。 (2)低壓輸電線雷電勢的分布與過渡 低壓為三相四線制,零線與大地相連,雷電發(fā)生在低壓電線時,由于零線本身存在著電抗,接地電阻不可能達到零值,四線上的雷電都向地放電,此時的低壓輸電線首先是零電位急劇上升,當然相線由于零電位上升而相應上升,而且每相向零線放電時,都是通過用戶設備進行的,由于各自的負載不同,相應的雷電位也不盡相同,這樣又出現(xiàn)了相對零線間和相間的雷電流。所以當雷擊低壓線時,對用戶設備造成破壞的一是對地絕緣,二是超壓過載,往往由于零線電位升高而破壞用戶絕緣的故障最明顯。 (3)小電流電路 所謂小電流電路系指電源功率容量小、電源內(nèi)阻高的電路網(wǎng)絡,這種電路我們常見的如電話外線及電子線路本身。 上面說過,目前的防雷器件是由尖端放電和壓敏原理派生,這些器件用于線路超壓保護時,接線方式一般為線間并聯(lián)及線與地間并聯(lián),這種器件在小電流電路上是能有效地箝定超壓電流的,因為小電流電路功率容量小,電源內(nèi)阻高。比如:當雷電沖擊電話用戶時,雷電流通過用戶線倒傳到交換機的終端,如果交換機終端安了壓敏器件,壓敏器件對雷電流進行泄放時,電話線路由于阻值大將雷電流給予限制,因此壓敏器件能箝定在它的閾值上。在電子電路中,我們常見在穩(wěn)壓二極管的前面串聯(lián)一只電阻,這只電阻是限流電阻,也可看成是為增加電源內(nèi)阻而設定的,由于此電阻的限流,穩(wěn)壓二極管就能將電壓箝定在它的閾值上,但負載電流不能大,否則穩(wěn)壓值低于閾值,所以在小電流電路中,使用壓敏器件進行電壓的箝位能有效地防止雷電的沖擊,就是說防雷效果是顯著的。 (4)大電流電路 大電流電路一般指電源電路,這種電路的特點是功率容量大、電源內(nèi)阻小。如果在這樣的電路上使用壓敏器件并聯(lián)在線路上,力圖用壓敏器件的過壓放電特性,將過壓值箝定在壓敏器件的閾值上顯然是做不到的。雷電要在電源電路形成超壓狀態(tài),它的功率能量必須大于電源電路的能量,這樣一個巨大的能量由壓敏器件泄放而器件本身不損壞是不可能的,這是其一;其二,由于電源內(nèi)阻小,就是在壓敏器件放電過程中,壓敏器件兩端電壓不會低于線路的過壓值,這樣用戶設備同樣受雷電過壓的沖擊。 現(xiàn)在市面上有些設備號稱具有防雷功能,單純的將防雷器件和整機并聯(lián)在電源上,并在電源電路上串聯(lián)保險絲。制作者們認為在雷擊過程中,壓敏器件放電而使電路過流而熔斷保險絲,達到避雷的目的。這樣的接線,對功率器件即電機和電力變壓器有一定的避雷作用,但對于微電子設備沒有防范功效。前面說過加在壓敏器件上的過壓值同時加到了用戶設備上,而且由于電源內(nèi)阻小,電壓不會因此而降落很多,另外,保險絲是一個熱元件,有一個熔斷時間,所以用保險絲與壓敏器件配合的避雷器裝置,對于微電子設備而言是不可取的。 要使壓敏器件在電源電路上發(fā)揮避雷作用,只有增加電源內(nèi)阻即在電路上串聯(lián)電抗元件,但是由于這個電抗元件使電路在正常工作狀態(tài)下,降低了工作電壓,同時又隨負載的變化而波動使此電源不能使用,所以當今防雷問題的焦點幾乎在電源線引雷問題上。 由于電源線上不能串聯(lián)電抗元件,但又要使用壓敏器件泄放雷電流,于是有人從雷電頻譜入手,提出了雷電的浪流現(xiàn)象。什么是浪流呢?雷電如水浪一樣來勢兇猛,下降迅速,認為這樣一個沖擊電流主要分量在高頻,所以在電路上使用毫亨級的電感就能防止浪流。當

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論