![[機(jī)械畢業(yè)論文]鋼管鋸削的切削模型[參數(shù)計算]及機(jī)床主機(jī)設(shè)計【專業(yè)答辯必備資料】_第1頁](http://file.renrendoc.com/FileRoot1/2014-9/3/40c27b7d-10c1-46b8-8156-dc6833d6d0c7/40c27b7d-10c1-46b8-8156-dc6833d6d0c71.gif)
![[機(jī)械畢業(yè)論文]鋼管鋸削的切削模型[參數(shù)計算]及機(jī)床主機(jī)設(shè)計【專業(yè)答辯必備資料】_第2頁](http://file.renrendoc.com/FileRoot1/2014-9/3/40c27b7d-10c1-46b8-8156-dc6833d6d0c7/40c27b7d-10c1-46b8-8156-dc6833d6d0c72.gif)
![[機(jī)械畢業(yè)論文]鋼管鋸削的切削模型[參數(shù)計算]及機(jī)床主機(jī)設(shè)計【專業(yè)答辯必備資料】_第3頁](http://file.renrendoc.com/FileRoot1/2014-9/3/40c27b7d-10c1-46b8-8156-dc6833d6d0c7/40c27b7d-10c1-46b8-8156-dc6833d6d0c73.gif)
![[機(jī)械畢業(yè)論文]鋼管鋸削的切削模型[參數(shù)計算]及機(jī)床主機(jī)設(shè)計【專業(yè)答辯必備資料】_第4頁](http://file.renrendoc.com/FileRoot1/2014-9/3/40c27b7d-10c1-46b8-8156-dc6833d6d0c7/40c27b7d-10c1-46b8-8156-dc6833d6d0c74.gif)
![[機(jī)械畢業(yè)論文]鋼管鋸削的切削模型[參數(shù)計算]及機(jī)床主機(jī)設(shè)計【專業(yè)答辯必備資料】_第5頁](http://file.renrendoc.com/FileRoot1/2014-9/3/40c27b7d-10c1-46b8-8156-dc6833d6d0c7/40c27b7d-10c1-46b8-8156-dc6833d6d0c75.gif)
已閱讀5頁,還剩61頁未讀, 繼續(xù)免費閱讀
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
I 鋼管鋸削的切削 模型 及機(jī)床主機(jī)設(shè)計 摘要 鋼管 鋸削機(jī)床是鋼管軋制生產(chǎn)線中的重要設(shè)備,它能將一定尺寸范圍內(nèi)的鋼管切割成一定的長度。為了改變此類設(shè)備被國外企業(yè)所壟斷的現(xiàn)狀,根據(jù)鋸床工作平穩(wěn),切割效率高,鋸片使用壽命高的要求,設(shè)計一臺立式圓盤鋸床。通過研究鋸削時的實際情況,分析鋸切鋼管 70一次 4 根, 340鋼管一次一根兩種情況下的受力,選出極端切削條件,提出切削模型,在此基礎(chǔ)上計算出切削力、切削扭矩、切削功率,以此來 計算 傳動比、齒輪齒數(shù)、齒輪模數(shù)、傳動軸的直徑等運動學(xué)和動力學(xué)參數(shù)。根據(jù)所得參數(shù) 設(shè)計 鋸削 減速箱部件結(jié)構(gòu)和鋸 床主機(jī)結(jié)構(gòu),實現(xiàn)鋸削過程的各種運動,從而得到高效的大型鋸床。 關(guān)鍵詞 :立式圓盤鋸床 鋸削 模型 減速 箱 鋸床主機(jī) II THE Cutting Model and the Host Machine Design of Steel Tube Sawing Abstract Steel pipe sawing machine is an important device in the pipe rolling production line, the steel pipe will be cut to a certain size by the machine. In order to change the status that such equipment is monopolized by foreign enterprises, design a vertical circular sawing machines according to the requirements of sawing stable, high cutting efficiency and life of saw blade. By the actual sawing situation, analysis of the force in both cases that sawing four70 steel pipes once and 340 steel pipe once, elect the extreme cutting conditions, put forward a cutting model, calculate the cutting force, cutting torque, cutting power on this basis, then calculate the parameters of kinematics and dynamics include transmission ration, the numbers of gear teeth, gear modulus, the drive shaft diameter so on. Design a gear box components structure and sawing host structure based on the parameter ,achieve a variety of movement of the sawing process, and get a large, efficient sawing. Key words : vertical circular sawing machine; Sawing model; Gear box; Sawing host III 目錄 摘要 . I Abstract . II 1. 緒論 . 1 1.1 鋼管的用途 . 1 1.2 幾種鋸床在鋼管鋸切工藝中的比較 . 1 1.3 國內(nèi)鋸床的現(xiàn)狀 . 3 1.4 課題背景及必要性 . 3 2. 切削模型的提出 . 3 2.1 刀具 參數(shù) . 3 2.2 切削力的計算 . 3 3. 減速箱的設(shè)計 . 6 3.1 傳動方案的確定 . 6 3.2 選擇電動機(jī) . 6 3.3 運動和動力參數(shù)計算 . 7 3.3.1 傳動比的分配 . 7 3.3.2 各軸的轉(zhuǎn)速計算 . 7 3.3.3 各軸輸入功率計算 . 7 3.3.4 各軸輸入扭矩計算 . 8 3.4 V帶傳動的設(shè)計計算 . 8 3.4.1 傳動參數(shù)的確定 . 8 3.4.2 帶輪的設(shè)計 . 9 3.4.3 帶輪的張緊裝置 . 9 3.5 齒輪傳動的設(shè)計計算 . 9 3.5.1 高速級的齒輪 . 9 3.5.2 低速級的齒 輪 . 14 3.5.3 齒輪的幾何尺寸 . 18 3.5.4 齒輪的圓周力、徑向力、軸向力 . 18 3.5.5 齒輪的結(jié)構(gòu) . 19 3.6 軸系零件的設(shè)計計算 . 19 3.6.1 選擇軸的材料 . 19 3.6.2 初算軸徑 . 19 3.6.3 軸的結(jié)構(gòu)設(shè)計 . 20 3.6.4 軸承的選擇 . 20 3.6.5 軸的校核計算 . 20 3.6.6 軸承的校核計算 . 24 4. 機(jī)床主機(jī)的結(jié)構(gòu)設(shè)計 . 26 4.1 導(dǎo)軌的選用 . 26 4.1.1 導(dǎo)軌類型 . 26 4.1.2 導(dǎo)軌長度 . 27 IV 4.2 滾珠絲杠的計算和選擇 . 27 4.3 伺服電機(jī)的選擇 . 28 4.4 聯(lián)軸器的選擇 . 29 4.5 夾緊裝置的設(shè)計計算 . 29 4.6 機(jī)床立柱的設(shè)計 . 31 總結(jié) . 32 參考文獻(xiàn) . 33 致謝 . 34 外文原文 . 35 中文翻譯 . 50 1 1. 緒論 1.1 鋼管的用途 鋼管 主要用來輸送流體和用作鍋爐等的熱交換器管。 鋼管是一種多功能的經(jīng)濟(jì)斷面鋼材。它在國民經(jīng)濟(jì)各部門應(yīng)用愈來愈廣泛,需求量也越 來越大。管材的需求量之所以急劇增長,是因為管子能用各種材料來制造, 而且質(zhì)量和 精度也 高 。 鋼管作為輸送管廣泛地用于輸送油、氣、水等各種流體,如石油及天然氣的鉆探開采與輸送 、 鍋爐的油水與蒸汽管道 、 一般的水煤氣管道?;げ块T一般用管道化方式生產(chǎn)與運輸各種化工產(chǎn)品。所以鋼管被人們稱為工業(yè)的“血管”。 鋼管 作為結(jié)構(gòu)管大量地用于機(jī)械制造業(yè)和建筑業(yè),如用于制作房架、塔吊、鋼管柱、各種車輛的構(gòu)架等。在斷面面積相同的條件下,鋼管比圓鋼、方鋼等的抗彎能力大,剛性好,其單位體積的重量輕。因此,鋼管是一種抗彎能力較強(qiáng)的結(jié)構(gòu)材料。 鋼管 又是軍 隊 工業(yè)中的重要材料,如用于制造槍管、炮筒及其他武器。隨 著航空、火箭、導(dǎo)彈、原子能與宇宙空間技術(shù)等的發(fā)展,精密、薄壁、高強(qiáng)度鋼管的需求量正迅速增長。隨著鋼管需求量的日益增長,鋼管的生產(chǎn) 加工 也顯得尤其重要, 而鋸切又是鋼管加工中常見的一道工序,因 此, 對于鋼管鋸削的研究及其機(jī)床設(shè)計也顯得很必要。 1.2 幾種鋸床在鋼管鋸切工藝中的比較 ( 1) 帶鋸床 。 傳統(tǒng) 的金屬切斷設(shè)備,用環(huán)狀帶鋸等鋸削碳素結(jié)構(gòu)鋼、低合金鋼、高合金鋼、不銹鋼、耐酸鋼等各種金屬材料的機(jī)床,通常采用雙立柱或單立柱的結(jié)構(gòu)形式。切削速度一般為 22-65m/min,吃刀量為 0.01mm/z。其優(yōu)點是鋸床 結(jié)構(gòu)簡單,操作方便 ,配套輔機(jī)設(shè)備 要 不高 ; 造價低 , 使用維護(hù)方便 , 切口窄 , 成材率高。缺點是切削效率 慢 ,適用于低節(jié)奏斷續(xù)型生產(chǎn)模式,吊裝和找正均需人工參與,斷面誤差難以保證,無法實現(xiàn)連續(xù)自動化 生產(chǎn) 。 圖 1-1 臥式帶鋸 2 ( 2) 臥式圓盤鋸床 。 采用 臥式或傾斜式的床身形式,動力單元(由驅(qū)動電機(jī)、齒輪箱、圓鋸片等組成)采用伺服驅(qū)動實現(xiàn)精確進(jìn)給。由于其切削力和夾緊力大,適用于切削單根鋼管、圓形或方形坯料以及特定類型的型材(如軌梁)。切削速 度為 60-140r/min,吃刀量為 0.05-0.2mm/z。其設(shè)備優(yōu)點為:結(jié)構(gòu)較立式圓盤鋸床簡單,機(jī)床剛性好,工藝配套完善,集成度高,易于實現(xiàn)全動化操作,切削精度高,效率高。缺點是噪音較大,切口較寬,只適用于單根工料的 切削 。 圖 1-2 臥式 硬質(zhì)合金圓盤鋸床 ( 3) 立式圓盤鋸床 。 連軋 管線冷床設(shè)備后的首選設(shè)備,能夠?qū)崿F(xiàn)鋼管的成排鋸切。其主要結(jié)構(gòu)組成與臥式圓盤鋸床 相似,區(qū)別在于動力單元和進(jìn)給裝置沿垂直方向布置。水平框架式夾緊機(jī)構(gòu)壓力可調(diào),適合切割成排擺放的規(guī)則截面的鋼材,也適用于鋸切單根鋼材。其設(shè)備優(yōu)點為:成排鋸切 , 精度高 , 可靠性高 , 適于連續(xù)作業(yè) , 工藝配套完善 ,集成度高 , 全自動化操作 , 效率高。缺點是噪音較大,切口較 寬 。 圖 1-3 立式圓盤鋸床 3 1.3 國內(nèi)鋸床的現(xiàn)狀 在 國內(nèi),各種帶鋸床和小型圓鋸床的生產(chǎn)制造已經(jīng)很多,少數(shù)設(shè)備已經(jīng)達(dá)到國際同類產(chǎn)品的技術(shù)水平。但國內(nèi)從事硬質(zhì)合金圓盤鋸 床研發(fā)和制造的機(jī)構(gòu)并不多, 且國產(chǎn)鋸機(jī)有著一些不足,如:床身結(jié)構(gòu)的剛度不足;力單元的切削抗振性不夠;緊機(jī)構(gòu)的設(shè)計相對簡單,結(jié)構(gòu)剛性不足,夾緊力不能適應(yīng)各種規(guī)格的鋼管條件;控制系統(tǒng)和 配套輔機(jī)有待改善。至于國外,以生產(chǎn)廠家德國貝靈格公司為例,其生產(chǎn)雙立柱帶鋸床的歷史已有 20 余年,至今已開發(fā)出近百個型號,達(dá)到了很高的技術(shù)水平。 所以我們和國外相比,還有很大的差距。 1.4 課題背景及必要性 鋼管 的應(yīng)用廣泛,而鋼管鋸削機(jī)床是鋼管軋制生產(chǎn)線中的重要設(shè)備。目前鋼廠中 使用的此類設(shè)備都為國外企業(yè)所壟斷,以德國的鋸床居 多。因此,以國內(nèi) 設(shè)備替代 進(jìn)口設(shè)備成為當(dāng)務(wù)之急。此課題是由太原通澤機(jī)電設(shè)備有限公司提出的。解決該課題,研究設(shè)計開發(fā)高效的大型鋸床,提高與國外鋸床的競爭力,顯然十分必要。 2. 切削模型的提出 2.1 刀具參數(shù) 刀具類型:硬質(zhì)合金圓鋸片 外徑 D: 1430mm 內(nèi)孔 d: 166mm 齒數(shù) Z: 200 齒厚 B: 7mm 齒距 S: 22mm 齒高 H: 7.1mm 圓周速度cv: 100m/min 2.2 切削力的計算 轉(zhuǎn)速: m i n/26.221 4 3 01 0 0 01001 0 0 0.0rdvn c ( 2.1) 進(jìn)給速度: smsmmv f /33.1130340 ( 2.2) 進(jìn)給量: mmnvf f 54.3026.22 6033.1160. ( 2.3) 4 每齒進(jìn)給量: zmmzff z /15.0200/54.30/ ( 2.4) 鋸削過程類似于周銑,故圓周切削力是主要消耗功率的力,同時它將引起鋸床主軸產(chǎn)生扭 矩 變形和彎曲變形,故主 軸強(qiáng)度以cF為計算的主要依據(jù)。 對于周銑,切削力計算式: 87.0075.088.06.9681.9 zdafaF pzec (2.5) 在鋸削一根 340 的鋼管時,其極端工作條件如圖 2-1 所示位置,此時.1 4 3 02 0 0/15.0769.2 0 0 0 mmdzzmmfmmamma zpe ,。 代入cF計算式中: 87.0075.088.06.9681.9 zdafaF pzec = 87.075.088.0 1430200715.069.2006.9681.9 =61083.36(N) 圖 2-1 鋸削 一 根鋼管的極端切削條件 5 在鋸削 4 根 70 的鋼管時,其極端切削條件如圖 2-2 所示位置,1 4 3 0,2 0 0/15.0776.89 0 dzzmmfmmamma zpe , 代入 cF 計算式中: 87.0075.088.06.9681.9 zdafaF pzec 87.075.088.0 1430200715.076.896.9681.9 =30089.37( N) 綜上可得,鋸削鋼管時,在極端切削條件下,切削力為 NFc 63.61083,切削扭矩為: mNdFT c 8.4 3 6 7 42 101 4 3 063.6 1 0 8 32 3 (2.6) 切削功率為: kwvFPcCC 81.1 0 1)60/1 0 0(63.6 1 0 8 3 (2.7) 圖 2-2 鋸削 四 根鋼管的極端切削條件 6 3. 減速箱的設(shè)計 3.1 傳動方案的確定 根據(jù) 鋸片的轉(zhuǎn)速 n和所獲得的切削功率 Pc 選擇電動機(jī),然后由電動機(jī)轉(zhuǎn)速 和 鋸片轉(zhuǎn)速估計傳動比約為 66.49, 考慮帶傳動的傳動比,故采用二級 斜齒 輪圓柱齒輪減速器。 圖 3-1 二級斜齒圓柱齒輪減速器 3.2 選擇電動機(jī) 傳動系數(shù)總效率為: 85.099.097.094.0 3233221 (3.1) 式中 1 -V 帶傳動效率,取 0.94; 2 -齒輪( 8 級精度)傳動效率,取 0.97; 3-滾動軸承效率,取 0.99。 工作機(jī) 所需的輸入功率(即鋸削功率)為: kwPP CW 81.101 (3.2) 電動機(jī)所需功率為: kwPP wd 38.11886.0/81.101/ (3.3) 1 2 3 7 根據(jù) 電動機(jī)所需功率和同步轉(zhuǎn)速,查表確定電動機(jī)型號為 Y315L2-4,額定功率132kw,同步轉(zhuǎn)速 1500r/min,4 級,滿載轉(zhuǎn)速 1480r/min。 3.3 運動和動力參數(shù)計算 3.3.1 傳動比的分配 計算總傳動比 49.6626.22/1 4 8 0/ wm nni (3.4) 帶傳動的傳動比取為 ,3帶i則減速器總傳動比為: 16.223 49.66 帶iiij (3.5) 則雙級斜齒圓柱齒輪減速器高速級的傳動比 1i 為: 37.53.11 jii (3.6) 低速級傳動比 : 13.4/ 12 iii j (3.7) 3.3.2 各軸的轉(zhuǎn)速計算 m in/33.493m in/3/1480 rrn I (3.8) m in/87.91m in/37.5/33.4932 rrn m in/26.22m in/13.4/74.1043 rrn 3.3.3 各軸輸入功率計算 kwPP d 28.1 1 194.038.1 1 811 (3.9) kwPP 86.1 0 699.097.028.1 1 13212 kwPP 62.10299.097.086.1063223 8 3.3.4 各軸輸入扭矩計算 mNnPT 79.2268)33.493/20.117(9550/9550 111 (3.10) mNnPT 15.10997)87.91/80.105(9550/9550 222 mNnPT 10.4 4 0 2 6)26.22/62.1 0 2(9 5 5 0/9 5 5 0 333 3.4 V 帶傳動的設(shè)計計算 3.4.1 傳動參數(shù)的確定 選擇 窄 V 帶 工作情況系數(shù) 由 表 得 0.1AK 計算功率 kwPKPAC 38.1 1 838.1 1 80.1 (3.11) 選帶型號 由 圖 得 SPB 型 小帶輪直徑 由 表 得 取 mmD 2001 大帶輪直徑 33.4 9 31 4 8 02 0 0)02.01()1(2112 n nDD 選 mmD 6002 ( 3.12) 計算帶長mD mm4002 6002002 21 DDD m ( 3.13) 求 mmDD 2002 2006002_ 12 ( 3.14) 初取中心距 mma 800 帶長 mmaaDL m 6.2 9 0 68 0 02 0 08 0 024 0 0222 ( 3.15) 基準(zhǔn)長度 查 圖 mmLd 3150 求中心距和包角 中心距 22 8)(414 mm DLDLa ( 3.16) mm8331768)3562500(414 3563000 22 9 小輪包角 00001201 2.151608.832 20060018060180 a DDa ( 3.17) 求帶根數(shù) 帶速 smnDv /5.151 0 0 060 1 4 8 02 0 01 0 0 060 11 ( 3.18) 傳動比 333.49314 8 021 nni ( 3.19) 帶根數(shù) 由 表 得 26.130 p , 92.0k, 94.0Lk , 70.30 p 根894.092.0)70.326.13(33.118)( 00 Lc kkpppz ( 3.20) 求 軸上載荷 張緊力 20 )5.2(5 0 0 qvk kvzpF c ( 3.21) N5.8675.1520.0)92.0 92.05.2(85.15 33.118500 2 軸上載荷 2s in2 10 zFF Q ( 3.22) N7.1 3 46 72 2.151s in5.86782 3.4.2 帶輪的設(shè)計 由帶速 smv /30 ,帶輪采用鑄鐵制造。大帶輪采用輪輻式結(jié)構(gòu),小帶輪采 用腹板式結(jié)構(gòu)。 3.4.3 帶輪的張緊裝置 采用定期張緊,具體結(jié)構(gòu)見 圖 3.5 齒輪傳動的設(shè)計計算 3.5.1 高速級的齒輪 采用 閉式軟齒面斜齒輪,故以齒面的接觸疲勞強(qiáng)度作 設(shè)計 ,以齒根彎曲疲勞強(qiáng) 度作校核。大小齒輪均采用inr TMC20,滲碳淬火 +低溫回火, HRC5662。 10 a.齒面接觸疲勞強(qiáng)度計算 初步計算 轉(zhuǎn)矩 1T mmNmNT 226879079.22681 齒寬系數(shù)d 查 表 得 2.1d 接觸疲勞極限 limH 查 圖 得aHH MP1 6 0 02lim1lim 初步計算的許用接觸應(yīng)力 H aHHH MP1 4 4 01 6 0 09.09.0 l i m21 ( 3.23) dA值 由 表 估計 015 ,取 82dA 初步計算的小齒輪直徑 1d 17.8437.5 137.514402.1 2 2 6 8 7 9 0821 3 2311 uuTAdHdd 取 mmd 951 ( 3.24) 初步齒寬 b mmdbd 1 1 4952.11 ( 3.25) 校核計算 圓周速度 v smndv /45.21 0 0 060 33.4 9 3951 0 0 060 11 ( 3.26) 齒數(shù) z,模數(shù) m 和螺旋角 1 2 42337.5,23 121 izzz ( 3.27) 1304348.4239511 zdm t ( 3.28) 查表取 4nm 0 1426141 30 4 3 48.4 4c os ar ( 3.29) 使用系數(shù) 由 表 得 0.1Ak 動載系數(shù)vk 由 圖 得 15.1vk 齒間載荷分配系數(shù)Hk 11 由 表 先求 NdTFt 4 7 7 6 4952 2 6 8 7 9 02211 ( 3.30) mmNmmNb Fk tA /100/78.502954 7 7 6 40.1 ( 3.31) 66.1142614co s)1 2 41231(2.388.1)11(2.388.1 021 zz ( 3.32) 26.2142614t an232.1t ans i n01 zmb dn ( 3.33) 92.326.266.1 ( 3.34) 533520142614co s20t anar ct anco st anar ct an 000 nt ( 3.35) 97.0533520co s/20co s142614co sco s/co sco sco s 000 tnb ( 3.36) 由此得 76.197.0/66.1co s/ 22 bFH kk ( 3.37) 齒向載荷分布系數(shù)Hk 由 表 得 bcdbBAk H 32110)( ( 3.38 ) 47.11141061.02.116.017.1 32 81.247.166.115.10.1 HHvA kkkkk ( 3.39) 彈性系數(shù) EZ 由 表 得 aE MPZ 8.189 節(jié)點區(qū)域系數(shù) HZ 由 圖 得 45.2HZ 重合度系數(shù)Z 因 ,故取 1,1 78.066.111)1(34 Z ( 3.40) 螺旋角系數(shù)Z 98.0142614c o sc o s 0 Z ( 3.41) 許用接觸應(yīng)力 H aH MP1440 12 驗算 uubdKTZZZZHEH12211 ( 3.42) 37.5137.5951142 2 6 8 7 9 081.2298.078.045.28.1892 aa MPMP 1 4 4 087.1 3 6 2 確定傳動主要尺寸 中心距 mmida 3032 )137.5(952 )1(1 ( 3.43) 實際分度圓直徑 d,因中心距未作圓整,故分度圓直徑不會改變,即 mmi ad 95137.5 3142121 ( 3.44) mmidd 5 1 19537.512 ( 3.45) b.齒根彎曲疲勞強(qiáng)度驗算 齒形系數(shù)FaY 26142614c o s23c o s 03311 ZZv (3.46) 137142614co s124co s 03322 ZZv (3.47) 由 圖 53.21 FaY 15.22 FaY 應(yīng)力修正系數(shù)saY 由圖 6.11 SaY 78.12 SaY 重合度系數(shù)Y co s)11(2.388.121 vvV zz (3.48) 68.1142614c o s)137 1261(2.388.1 0 69.068.1 75.025.075.025.0 avY (3.49) 螺旋角系數(shù)Y 13 計算)時,按當(dāng) 11(75.0125.0125.01m i n Y (3.50) m i n0000 88.01 2 0 1426141-11 2 0-1 YY (3.51) 42.369.066.192.3 Yr 前 已 求得 YK F 76.1 故 76.1FK 齒向載荷分布系數(shù)FK 由 圖 得 7.12)45.22/(114/ hb 5.1FK 載荷系數(shù) 04.35.176.115.10.1 FFVA KKKKK (3.52) 彎曲疲勞極限 limF 由 圖 得 aFF MP1 0 5 02lim1lim 彎曲最小安全系數(shù) minFS 由表得 25.1min FS 應(yīng)力循環(huán)系數(shù) LN 由 表 估計 91.49,10103 106 MN L 則指數(shù) 811 1042.14 8 0 033.49316060 hL trnN (3.53) 原估計應(yīng)力循環(huán)系數(shù)正確 7812 1064.237.5/1042.1/ iNN LL (3.54) 彎曲壽命系數(shù)NY 由 圖 得 97.01 NY 99.02 NY 尺寸系數(shù) XY 由 圖 得 0.1XY 許用彎曲應(yīng)力 F aF XNFF MPSYY 8.8 1 425.10.197.01 0 5 0m i n11l i m1 (3.55) aF XNFF MPSYY 6.8 3 125.10.199.01 0 5 0m i n22l i m2 驗算 14 YYYYmbdKTSaFanF 111 112 (3.56) aa MPMP 8.8147.78288.069.06.153.2495114 2 2 6 8 79004.32 aaSaFa SaFaFF MPMPYYYY 6.8 3 10.7 4 06.153.278.115.27.7 8 2112212 (3.57) 傳動無嚴(yán)重過載,故不作靜強(qiáng)度校核。 3.5.2 低速級的齒輪 采用閉式 軟齒面斜齒輪,故以齒面的接觸疲勞強(qiáng)度作設(shè)計,以齒根彎曲疲勞 度作校核。大小齒輪均采用inr TMC20,滲碳淬火 +低溫回火, HRC5662。 a.齒面接觸疲勞強(qiáng)度計算 初步計算 轉(zhuǎn)矩 1T mmNmNT 1 0 9 9 7 1 5 015.1 0 9 9 71 齒寬系數(shù)d 查表得 2.1d 接觸疲勞極限 limH 查圖得aHH MP1 6 0 02lim1lim 初步計算的許用接觸應(yīng)力 H aHHH MP1 4 4 01 6 0 09.09.0 l i m21 dA值 由表估計 015 ,取 82dA 初步計算的小齒輪直徑 1d 65.14413.4 113.41 4 4 02.1 1 0 9 9 7 1 5 0821 3 2311 uuTAdHdd 取 mmd 1521 初步齒寬 b mmdbd 4.1 8 21 5 22.11 取 mmb 200 校核計算 圓周速度 v smndv /73.0100060 87.91152100060 11 齒數(shù) z,模數(shù) m 和螺旋角 1533717.4,37 121 izzz 15 1 0 8 1 0 8 1.4371 5 211 zdm t 查表取 4nm 0 2410131 08 1 0 81.4 4c os ar 使用系數(shù) 由表得 0.1Ak 動載系數(shù)vk 由圖得 05.1vk 齒間載荷分配系數(shù)Hk 由表先求 NdTFt 3.1 4 4 6 9 91521 0 9 9 7 1 5 02211 mmNmmNb Fk tA /100/5.723200 3.1 4 4 6 9 90.1 73.1241013co s)1 5 3137 1(2.388.1)11(2.388.1 021 zz 31.3241013t an372.1t ans i n01 zmb dn 04.531.373.1 452920241013co s20t anar ct anco st anar ct an 000 nt 98.0452920co s/20co s241013co sco s/co sco sco s 000 tnb 由此得 80.198.0/73.1co s/ 22 bFH kk 齒向載荷分布系數(shù)Hk 由表得 bcdbBAk H 32110)( 51.12001061.02.116.017.1 32 85.251.180.105.10.1 HHvA kkkkk 16 彈性 系數(shù) EZ 由表得 aE MPZ 8.189 節(jié)點區(qū)域系數(shù) HZ 由圖得 42.2HZ 重合度系數(shù)Z 因 ,故取 1,1 76.073.111)1(34 Z 螺旋角系數(shù)Z 99.0241013c o sc o s 0 Z 許用接觸應(yīng)力 H aH MP1440 驗算 uubdKTZZZZHEH12211 13.4113.41522001 0 9 9 7 1 5 085.2299.076.042.28.1892 aa MPMP 1 4 4 03.1 4 3 6 確 定傳動主要尺寸 中心距 mmida 3902 )113.4(1522 )1(1 實際分度圓直徑 d,因中心距未作圓整,故分度圓直徑不會改變,即 mmi ad 1 52113.4 3 902121 mmidd 6 2 81 5 213.412 b.齒根彎曲疲勞強(qiáng)度驗算 齒形系數(shù)FaY 40241013c o s37c o s 03311 ZZv 1 6 6241013co s1 5 3co s 03322 ZZv 由圖 10.21 FaY 06.22 FaY 應(yīng)力修正系數(shù)saY 由 圖 55.11 SaY 60.12 SaY 重合度系數(shù)Y 17 co s)11(2.388.121 vvV zz 73.1241013c os)166 1401(2.388.1 0 68.073.1 75.025.075.025.0 avY 螺旋角系數(shù)Y 計算)時,按當(dāng) 11(75.0125.0125.01m i n Y m i n0000 89.01 2 0 2410131-11 2 0-1 YY 32.468.073.104.5 Yr 前已求得 YK F 80.1 故 80.1FK 齒向載荷分布系數(shù)FK 由 圖 得 1.21)45.22/(200/ hb 3.1FK 載荷系數(shù) 44.23.180.105.10.1 FFVA KKKKK 彎曲疲勞極限 limF 由 圖 得 aFF MP1 0 5 02lim1lim 彎曲最小安全系數(shù) minFS 由 表 得 25.1min FS 應(yīng)力循環(huán)系數(shù) LN 由 表 估計 91.49,10103 106 MN L 則指數(shù) 711 1002.34 8 0 074.10416060 hL trnN 原估計應(yīng)力循環(huán)系數(shù)正確 6712 1031.713.4/1002.3/ iNN LL 彎曲壽命系數(shù)NY 由 圖 得 99.01 NY 0.12NY 尺寸系數(shù) XY 由 圖 得 0.1XY 18 許用彎曲應(yīng)力 F aF XNFF MPSYY 6.8 3 125.10.199.01 0 5 0m i n11l i m1 aF XNFF MPSYY 84025.10.10.11 0 5 0m i n22l i m2 驗算 YYYYmbdKTSaFanF 111 112 aa MPMP 6.8314.82389.065.055.110.24152200 1099715044.22 aaSaFa SaFaFF MPMPYYYY 8 4 07.8 3 355.110.260.106.24.8 2 3112212 傳動無嚴(yán)重過載,故不作靜強(qiáng)度校核。 3.5.3 齒輪的幾何尺寸 高速級 低速級 小齒輪 大齒輪 小齒輪 大齒輪 齒數(shù) Z 23 124 37 153 分度圓 d/mm 95 511 152 628 齒頂圓ad/mm 100 519 156 636 齒根圓fd/mm 82 501 138 618 3.5.4 齒輪的圓周力、徑向力、軸向力 低速級的斜齒輪 圓周力: NdTFt 3.1 4 4 6 9 91521 0 9 9 7 1 5 02211 (3.58) 徑向力: 19 NFFF ntttr 6.5 4 0 8 9241013co s20t an3.1 4 4 6 9 9co st ant an00 (3.59) 軸向力: NFFta 9.3 3 8 6 7241013t an3.1 4 4 6 9 9t an 0 (3.60) 高速級的斜齒輪 圓周力: NdTFt 4 7 7 6 4952 2 6 8 7 9 02211 徑向力: NFFF ntttr 6.1 7 9 5 1142614co s20t an4 7 7 6 4co st ant an00 軸向力: NFFta 8.1 2 2 9 6142614t an4 7 7 6 4t an 0 3.5.5 齒輪的結(jié)構(gòu) 小齒輪均與軸做成一體,大齒輪均為鑄造圓柱大齒輪。 3.6 軸系零件的設(shè)計計算 3.6.1 選擇軸的材料 因為高速軸和中間軸均做成齒輪軸的形式,故軸的材料和齒輪的材料相同,采用20CrMnTi。低速軸也使用一樣的材料。 3.6.2 初算軸徑 根據(jù)公式nPCd 初算軸的最小直徑。其中, P-軸傳遞的功率, kw;n-軸的轉(zhuǎn)速,r/min; C-與軸材料有關(guān)的系數(shù)。 低速軸: mmd 1.1 6 362.2262.1 0 298 3 取 d=166mm (3.61) 中間軸: mmd 06.1 0 387.9186.1 0 698 3 取 d=105mm 高速軸: mmd 66.5933.4 9 328.1 1 198 3 取 d=60mm 20 3.6.3 軸的結(jié)構(gòu)設(shè)計 以初步確定的軸徑為最小軸徑,根據(jù)軸上零件的受力、安裝、固定以及加工要求,確定軸的各段徑向尺寸。軸上零件用軸肩定位的相鄰軸徑的直徑一般相差 510mm。為了軸上零件裝拆方便或加工需要,相鄰軸段直徑之差應(yīng)取 13mm。軸上安 裝零件的各段長度,根據(jù)相應(yīng)零件輪轂寬度和其他結(jié)構(gòu)需要來確定。不安裝零件的各軸段長度可根據(jù)軸上零件相對位置來確定。 3.6.4 軸承的選擇 因為軸上安裝有斜齒輪,有軸向力,所以采用角接觸球軸承 7034AC,能同時承受較大的徑向力和軸向力,背靠背安裝,使得軸承具有較高的抗顛覆力矩的能力。 3.6.5 軸的校核計算 低速軸: 低速軸分別受到斜齒輪和鋸片的作用力 斜齒輪: NF r 6.54089 NFa 9.33867 NFt 3.144699 鋸片: NFcn 52.27487 NFc 36.61083 軸的受力圖 圖 3-2 水平面的受力圖 圖 3-3 水平面彎矩圖 圖 3-4 1RF 1RF aF 2RF 2RF cnF cF 1RF rF aF 2RF cnF rF tF 21 垂直面的受力圖 圖 3-5 垂直面彎矩圖 圖 3-6 合成彎矩圖 圖 3-7 轉(zhuǎn)矩圖 圖 3-8 當(dāng)量彎矩圖 圖 3-9 1RF tF 2RF cF 22 a.計算支承反力 水平面反力 NFFF rcnR 98.340846.102304.557 4.5576.540896.13352.274876.102304.557 4.5576.1331 (3.62) NFFF rcnR 92.479486.102304.557 4.2196.540894.91052.274876.102304.557 4.2194.9102 (3.63) 垂直面反力 NFFF tcR 73.9 3 3 2 46.102304.557 4.5573.1 4 4 6 9 96.13336.6 1 0 8 36.102304.557 4.5576.1331 (3.64) NFFF tcR 41.3 0 3 6 36.102304.557 4.2193.1 4 4 6 9 96.13336.6 1 0 8 36.102304.557 4.2196.1332 (3.65) 水平面( xy)受力圖 見圖 3-3 垂直面( xz)受力圖 見圖 3-4 b.畫軸彎矩圖 水平面彎矩圖 見圖 3-5 垂直面彎矩圖 見圖 3-6 合成彎矩圖 見圖 3-7 c.畫軸轉(zhuǎn)矩圖 軸受轉(zhuǎn)矩 mKNT 44 轉(zhuǎn)矩圖 見圖 3-8 d.許用應(yīng)力 查表得 MPab 150 0 許用應(yīng)力值 MPab 90 1 應(yīng)力校正系數(shù) 6.01509001 bb (3.66) e.畫當(dāng)量彎矩圖 當(dāng)量轉(zhuǎn)矩 mKNT 4.264460.0 見圖 3-8 當(dāng)量彎矩圖 見圖 3-9 23 f.判斷危險截面 根據(jù) 當(dāng)量彎矩圖知,裝有斜齒輪處的軸端彎矩最大,故以該軸段的截面進(jìn)行安全系數(shù)校核。 對稱循環(huán)疲勞極限 軸材料選用 20CrMnTi,aB MP1000 aBb MP4 4 01 0 0 044.044.01 (3.67) aB MP3001 0 0 030.030.01 (3.68) 脈動循環(huán)極限 abb MP7484407.17.1 10 (3.69) aMP5 1 03 0 07.17.1 10 (3.70) 等效系數(shù) 18.07 4 87 4 84 4 022001 bbb (3.71) 18.05 1 05 1 03 0 022001 (3.72) (截面上的應(yīng)力) 彎矩 mmNmKNM I 3424000024.34 (3.73) 彎曲應(yīng)力幅 aIa MPWM 0.651741.03 4 2 4 0 0 0 03 (3.74) 扭轉(zhuǎn)切應(yīng)力 aT MPWT 8.411 7 42.04 4 0 0 0 0 0 03 (3.75) 扭轉(zhuǎn)切應(yīng)力幅和平均切應(yīng)力 ama MP9.202 8.412 (3.76) (應(yīng)力集中系數(shù)) 有效應(yīng)力集中系數(shù) ,由 02.1/ dD 查 表 得 5.1,5.2 kk 表面狀態(tài)系數(shù) 1 24 尺寸系數(shù) 68.0,6.0 安全系數(shù) 彎曲系數(shù) 設(shè)為無限壽命, 1Nk,由式得 62.1018.0656.01 5.244011 mabNkkS (3.77) 扭轉(zhuǎn)安全系數(shù) 13.39.2018.08.4168.01 5.130011 maNkk (3.78) 復(fù)合安全系數(shù) 43.113.362.1 13.362.1 2222 SSS SSS (3.79) 經(jīng)校核,安全。 同理,可對高速軸、中間軸進(jìn)行校核計算。經(jīng)校核,均安全。 3.6.6 軸承的校核計算 低速軸上的軸承: 圖 3-10 低速軸分別受到斜齒輪和鋸片的作用力 斜齒輪: NF r 6.54089 NFa 9.33867 鋸片: NFcn 52.27487 a.壽命計算 NFFF cnrr 10.433108.776 1.12752.274874.5576.540896.102304.557 )6.107.137(4.5571 25 NFFF cnrr 9.169378.776 4.91052.274874.5576.540896.102304.557 )6.10921()6.10230(2 (3.80) 附加軸向力: NFFrs 9.2 9 4 5 068.010.4 3 3 1 068.0 11 (3.81) NFFrs 8.1 1 5 1 768.09.1 6 9 3 768.0 22 (3.82) 因21 ssa FFF ,軸承 2 被壓緊,故軸向力 NFFFNFF asasa 8.6 3 3 1 89.3 3 8 6 79.2 9 4 5 0,9.2 9 4 5 0 1211 (3.83) X、 Y 值 01,68.010.4 3 3 1 09.2 9 4 5 01111 YXeFFra ,查表得 (3.84) 87.041.0,74.39.1 6 9 3 78.6 3 3 1 81122 YXeFFra ,查表得 (3.85) 沖擊載荷系數(shù)df 考慮中等沖擊 查表得 5.1df 當(dāng)量動載荷 NFYFXfP ard 2.6 4 9 6 5)9.2 9 4 5 0010.4 3 3 1 01(5.1)( 11111 ( 3.86) NFYFXfPard 8.9 3 0 4 7)8.6 3 3 1 887.09.1 6 9 3 741.0(5.1)( 22222 因 12 PP ,只計算軸承 2 的壽命。 hPCnL roh 5.6 5 7 9)8.9 3 0 4 71 9 2 0 0 0(26.221 6 6 7 0)(1 6 6 7 0 32 ( 3.87) b.靜載荷計算 00,YX 查表得 38.0,5.000 YX 當(dāng)量靜載荷 NFYFXParr 4.3 2 8 4 69.2 9 4 5 038.010.4 3 3 1 05.0101010 ( 3.88) NFPrr 10.4 3 3 1 0110 ( 3.89) NFYFXParr 1.3 2 5 3 08.6 3 3 1 838.09.1 6 9 3 75.02012020 26 NFPrr 9.1 6 9 3 7220 安全系 數(shù)0S 正常使用滾子軸承 查表得 5.00S 計算額定靜載荷 NPSCrr 2.6 4 9 6 510.4 3 3 1 05.010010 ( 3.90) NCr 2220000 軸承 100 rr CC 許用轉(zhuǎn)速驗算 載荷系數(shù) 1f 33.01 92 0 002.6 49 6 511 rCP 查圖得 5.011 f ( 3.91) 48.01 9 2 0 0 0 8.9304722 rCP 查圖得 5.012 f 載荷分布系數(shù) 2f 68.011 raFF 0.121 f ( 3.92) 74.322 raFF 95.022 f 18000 N 許用轉(zhuǎn)速 N m i n/9001 8 0 00.15.0021111 rNffN ( 3.93) m i n/8 5 51 8 0 095.05.0022122 rNffN 均大于 22.6r/min 結(jié)論:所選軸承滿足要求。 同理,高速軸和中間軸的軸承均滿足要求。 4. 機(jī)床主機(jī)的結(jié)構(gòu)設(shè)計 4.1 導(dǎo)軌的選用 4.1.1 導(dǎo)軌類型 機(jī)床主機(jī)共有兩處需要導(dǎo)軌,一處是進(jìn)給運動時減速箱整體沿導(dǎo)軌的直線運動;一處 27 是豎直夾緊時壓板沿導(dǎo)軌的直線運動。 減速 箱的進(jìn)給運動處 選擇 THK的 HSR 85CA 型 導(dǎo)軌 ,壓板運動處選擇 THK的 HSR 15CA 型導(dǎo)軌。 4.1.2 導(dǎo)軌長度 圖 4-1 根據(jù) 鋸片 所需的進(jìn)給位移,來選擇導(dǎo)軌的長度。 L=1890mm,F=180mm,G=45mm。 根據(jù)豎直壓板所需的位移,來選擇導(dǎo)軌的長度。 L=640mm,F=60mm,G=20mm。 4.2 滾珠絲杠的計算和選擇 滾珠絲杠 所承受的軸向力主要來源于減速箱的重力,又兩滾珠絲杠于減速箱對稱分布,故一個滾珠絲杠所 要 承載的軸向力大小為: NmgFa 1 47 0 02 8.94 00 02 (4.1) 固定 支持 圖 4-2 螺桿的安裝方法采用一端固定,一端支持。 安裝間距 L: 900mm 固定側(cè)軸承: 采用兩個角接觸球軸承 B7011AC/DT,接觸角度為 25 。 支持側(cè)軸承:采用一個深溝球軸承 61911。 使用滾珠螺桿型號 BNF 6310-5 直徑為 63mm。 挫曲負(fù)載 k g flEInPa52442221082.31 1 3 17064101.20.2 (4.2) 28 P:挫曲負(fù)荷 kgf al:安裝間距 mm E:楊氏系數(shù) )/101.2( 24 mmk g f I:螺桿的最小斷面慣性矩 4mm 。 4164dI 1d :螺桿谷徑 mm 為安全起見,挫曲負(fù)荷取上述 50%, k gfP 55 1091.1211082.3 容許伸張負(fù)荷 根據(jù)絲杠直徑 70 ,查表得 kgfP 435001 基本靜額定負(fù)荷 由表 kgfCao 28000 綜上,取容許軸向負(fù)荷為 28000kgf,滿足承載能力要求。 4.3 伺服電機(jī)的選擇 軸向負(fù)荷 aF14700N 外部負(fù)荷產(chǎn)生的摩擦扭矩 mNlFTap 269.02 0.11 4 7 0 02 (4.3) 根據(jù)所計算的扭矩選擇博美德 150mm 220v 級伺服電機(jī),型號 SM150-270-20LFB,額定轉(zhuǎn)矩 27 mN ,含制動器。 圖 4-3 29 4.4 聯(lián)軸器的選擇 伺服電動機(jī) 需要通過聯(lián)軸器帶動滾珠絲杠轉(zhuǎn)動起來,為了節(jié)省空間,采用 XF3 系列單節(jié)膜片聯(lián)軸器,該聯(lián)軸器除了體積小外,還具有高扭矩剛性和高靈敏度、零回轉(zhuǎn)間隙、順時針與逆時針回轉(zhuǎn)特性完全相同、不銹鋼膜片補(bǔ)償角向和軸向偏差、夾緊螺絲固定及不需要鍵聯(lián)接的特點。 圖 4-4 根據(jù)電機(jī)外伸軸的直徑和滾珠絲杠末端軸徑選擇相應(yīng)型號的聯(lián)軸器。 圖 4-5 4.5 夾緊裝置的設(shè)計計算 夾緊裝置分為水平夾緊和 垂 直夾緊兩套裝置 , 分別在鋸片的兩側(cè)各布置一套水平夾緊裝置和垂直夾緊裝置 。水平夾緊各由兩個 液壓缸對中實現(xiàn)夾緊,垂直夾緊裝置采用兩個液壓缸分別來驅(qū)動,采用整體框架式結(jié)構(gòu)設(shè)計,框架式結(jié)構(gòu)剛性好、導(dǎo)向性好。 ( 1) 垂直夾緊力 現(xiàn) 以鋸切 340 單根鋼管為例,進(jìn)行垂直夾緊力的分析。當(dāng)垂直夾緊裝置夾緊鋼管后,鋼管在垂直方向上受到方向相反大小相同的兩個力 P 的作用,如圖 4-6 所示。 30 圖 4-6 上壓板壓緊后鋼管受力狀態(tài) 取鋼管與垂直夾緊裝置接觸的一段環(huán)形管段作為研究對象。設(shè)鋼管的半徑為 R,管段寬度為 B,壁厚為 t,鋼管材料的屈服極限為s。則垂直夾緊力垂F為: KNRBtP s 6.363406318.0 3.38735506318.0 22 KNPF 3.182/6.362/ 垂 ( 2)水平夾緊力 鋼管水平夾緊的主要目的是為了防止鋸片鋸削時,圓周力cF使鋼管產(chǎn)生旋轉(zhuǎn)。如圖 4-7所示,鋼管分別受到水平夾緊力水F, 圓周力cF, 正壓力NF和 支持力 NF。 NFc 36.61083=61.1KN PFFcnN =27.5+36.6=64.1KN 其中,cnF為鋸片鋸削時對鋼管的正壓力, P為垂直夾緊合力。 則鋼管 在正壓力NF作用下產(chǎn)生的摩擦力Nf為: KNFfNN 2.191.6430.0 鋼管在水平夾緊力水F的作用下產(chǎn)生的摩擦力水f為: 水水 Ff 所以可得 RFRfRfN c4 水 31 KNfFFNc 0.3530.04 2.191.614 水 圖 4-7簡化后鋼管的受力狀態(tài) 4.6 機(jī)床立柱的設(shè)計 機(jī)床立柱是機(jī)床重要的結(jié)構(gòu)件之一,起著機(jī)床上下運動及支撐作用。 立柱是鋸床切削力的最終載 體,對系統(tǒng)整體剛度起決定性作用。結(jié)構(gòu)上采用雙立柱框架結(jié)構(gòu)設(shè)計。 機(jī)床立柱材質(zhì)為 HT250,這種材質(zhì)強(qiáng)度、耐磨性、耐熱性均較好, 減振性良好,鑄造性能較優(yōu),需進(jìn)行人工時效處理。 水F cF 水F NF NF 32 總結(jié) 本文 主要研究了立式硬質(zhì)合金圓盤鋸床的切削模型,在此基礎(chǔ)上對其減速箱和機(jī)床主機(jī)結(jié)構(gòu)進(jìn)行設(shè)計。立式硬質(zhì)合金圓盤鋸床的設(shè)計,對提高企業(yè)生產(chǎn)能力,增強(qiáng)我國鋼管生產(chǎn)企業(yè)的裝備能力具有很重要的意義。 本論文所做的主要工作如下: 1.針對鋼管的用途和各類 鋸床的生產(chǎn)特點,以及國內(nèi)外鋸床設(shè)備的發(fā)展現(xiàn)狀,對比國內(nèi)硬質(zhì)合金鋸床設(shè)備和國外的差距 并確立了立式硬質(zhì)合金圓盤鋸床的研發(fā)重點和必要性。 2.根據(jù)實際鋸削情況,分析了在不同管徑時的鋸削極限條件,從而制定出合理的切削參數(shù),提出正確的切削模型。 3.在所提出的切削模型的基礎(chǔ)上,計算切削功率,以此選擇電機(jī),求得傳動比,進(jìn)行減速箱的設(shè)計計算。其中包含了皮帶輪、 齒輪、軸和軸承校核計算,以及箱體、張緊裝置等得設(shè)計。 4.減速箱作為機(jī)床主機(jī)的一個部件,在其設(shè)計完成后,即可對機(jī)床主機(jī)進(jìn)行設(shè)計。機(jī)床主機(jī)的結(jié)構(gòu)設(shè)計主要是 分為三個部分:一、導(dǎo)軌和滾珠絲杠副的設(shè)計,包含了伺服電機(jī)和聯(lián)軸器的選擇;二、鋼管夾緊裝置的設(shè)計,其中含有液壓缸的計算設(shè)計;三、機(jī)床立柱和工作臺的設(shè)計和安裝。 本文主要針對的是機(jī)床的機(jī)械設(shè)計部分,所以缺乏一定的完整性,再加上本人知識的局限性,仍有不足之處和有待改進(jìn)的地方。 33 參考文獻(xiàn) 1.劉鴻文 .材料力學(xué) .第四版 .高等教育出版社, 2004. 2.馮辛安 .機(jī)制制造裝備設(shè)計 .第二版 .北京:機(jī)械工業(yè)出版社, 2005. 3.邱宣懷等 .機(jī)械設(shè)計 .第四版 .北京:高等 教育出版社, 1997. 4.楊光,席偉光等 .機(jī)械設(shè)計課程設(shè)計 .第二版 .北京:高等教育出版社, 2010. 5.龔 桂 義 .機(jī)械設(shè)計課程設(shè)計指導(dǎo)書 .第二版 .北京:高等教育出版社社, 1990. 6聞邦椿 .機(jī)械設(shè)計手冊 .第五版 .北京:機(jī)械工業(yè)出版社, 2010. 7.華南工學(xué)院,甘肅工業(yè)大學(xué) .金屬切削原理及刀具設(shè)計 .下冊 .上海科學(xué)技術(shù)出版社, 1980. 8.THK 股份有限公司 .THK LM 系統(tǒng)產(chǎn)品說明書 . 9.廖念釗,古瑩菴等 .互換性與技術(shù)測量 .第五版 .中國計量出版社, 2009. 10.楊勝強(qiáng),馬麟 .工程制圖學(xué)及計算機(jī) 繪圖 .第三版 .北京:國防工業(yè)出版社, 2008. 11.機(jī)床設(shè)計手冊 2(零件設(shè)計) .下冊 .機(jī)械工業(yè)出版社, 1978. 12.沈興全 .液壓傳動與控制 .第三版 .北京:國防工業(yè)出版社, 2010. 13.孫桓,陳作模等 .機(jī)械原理 .第七版 .北京:高等教育出版社, 2006. 14.呂明 .機(jī)械制造技術(shù)基礎(chǔ) .第二版 .武漢:武漢理工大學(xué)出版社, 2011. 15.熊杰 .鋼管鋸切夾緊力的力學(xué)分析,寶鋼技術(shù), 2003( 5): 2528 轉(zhuǎn) 52. 16. Tae Jo Ko*, Hee Sool Kim-Mechanistic cutting force model in band sawing , International Journal of Machine Tools & Manufacture 39 (1999) 11851197. 34 致謝 課題和論文是在指導(dǎo)老師軋老師的嚴(yán)格要求、悉心關(guān)懷和認(rèn)真指導(dǎo)下順利完成的。從選題,開題到結(jié)構(gòu)的設(shè)計和論文的完成,軋老師都投入了大量心血。 畢業(yè)設(shè)計期間,軋老師始終嚴(yán)格要求我,無論是開題報告,還是設(shè)計圖紙,都要有高的質(zhì)量,同時還鼓勵我們要充分運用所 學(xué)知識,注重實踐,勇于創(chuàng)新,結(jié)構(gòu)設(shè)計要新穎。軋老師淵博的學(xué)識、悉心的言傳身教、嚴(yán)謹(jǐn)?shù)闹螌W(xué)態(tài)度、兢兢業(yè)業(yè)的工作精神,都深深地影響了我,使我在畢業(yè)設(shè)計期間受益匪淺,并終身難忘。在此,我對軋老師對我的悉心關(guān)懷和耐心指導(dǎo)表示衷心的感謝! 感謝我的學(xué)友和朋友對我的關(guān)心和幫助。 35 外 文原文 Mechanistic cutting force model in band sawing Tae Jo Ko*, Hee Sool Kim School of Mechanical Engineering, Yeungnam University, Gyoungsan, Kyoungbuk 712-749, South Korea Received 4 March 1998; received in revised form 27 November 1998 Abstract In order to establish a mechanistic model of cutting force, specic cutting pressure was rst obtained through cutting experiments. The band sawing process is similar to milling in that it involves multi-point cutting, so it is not an easy matter to evaluate specic cutting pressure. This was achieved by making the thickness of workpiece smaller than one pitch of the saw tooth, analogous to y cutting in the face milling process. Then the cutting force was predicted by analysing the geometric shape of a saw tooth. The tooth shape used was the raker set style that is generally used in band sawing. A set of teeth comprises three teeth, ranked as left, straight, and right. The mechanistic model developed in the research considered the shape of each tooth in a set. The predicted cutting forces coincided well with those measured in the validation experiment. Therefore, the predicted cutting forces in band sawing can be used for the adaptive control of saw-All rights reserved. 1. Introduction Sawing machines are of primary value for the preparation of raw materials to be machined, and constitute some of the most important machine tools found in a machine shop. Common types of cutoff machines include reciprocating saws, horizontal endless band saws, universal tilt frame band saws, abrasive saws, and cold saws 1. Band saw machines use a steel band blade in the form of a band with the teeth on the edge. The band saw machine is widely used 36 for the following reasons: it has a high cutting efciency because the band cuts continuously with no wasted motion; material loss is small due to the small kerf of the saw cut; the feed rate through the material may be varied; the machine can handle workpieces of large dimensions.In general, such as when the workpiece is a cylindrical rod, the length of the cut changes progressively during in-feed of the band saw. In the case of constant in-feed rate, the load on the toothed edge increases along with the radial engagement of the cut, and this variation of the load induces vibration in the machine. The vibration affects the kerf of the saw cut and leads to severe tooth wear and breakage, causing deterioration of surface roughness and tolerance of the cut dimensions. With regard to this problem, Ulsoy and Morte 2 developed the equation of motion, based on Hamiltons principle, to the vibration of wide band saw blades, and obtained approximate solutions using both the classical Ritz and nite element-Ritz methods. Carlin et al. 3 analysed the buckling and vibration of a circular saw blade subjected to a combination of loading conditions approximating those encountered in operation. Chandrasekaran and colleagues 4,5 researched tooth chipping during the band sawing of steel, and Sarwar and colleagues 6,7 researched the relationship between cutting forces and friction characteristics and the parameters affecting the performance of a tooth blade. To deal with these problems at their origin, it is necessary to be able to predict the magnitude and variation of cutting force. However, it is not an easy matter to predict cutting force in band sawing since it is not a single-point cutting but multi-point cutting as in the milling process, and because the geometric shape of the cutting edge varies due to the offset on each side to provide clearance for the back of the blade. In previous studies, Sarwar et al. 8 analysed cutting forces with a nite element method and a single-point cutting technique using a turning lathe, and Hend-erer et al. 9 suggested an analytical method for predicting the cutting force of a saw blade in two-dimensional cutting. However, these models are based on two-dimensional cutting, and require prior knowledge of the shear angle. Nor can they provide the pulsation cutting forces needed in the vibration analysis, but give only the static mean cutting forces.In this work, we developed a mechanistic model for predicting cutting forces in multi-point cutting by a band saw. The cutting force system in face milling has been 37 extensively studied both analytically and empirically. In analytical modelling approaches, theories of single-point cutting such as energy method, ow stress method, matrix method, and single-shear plane method may be applied. While such a model may be sound in principle, it requires knowledge of the shear angle, dynamic stress, friction angle, etc., parameters which are usually not easy to determine in practice. As a result, a more empirical approach to modelling a face milling has been popular.The mathematical model for predicting cutting forces has been widely used after Martellotti 10,11, who developed mathematical equations for the milling process, calculating analytically with the tooth path, instantaneous undeformed chip thickness, etc. He also introduced the notion that the average undeformed chip thickness could be used in establishing a relationship between the conditions of the cut and specic pressure required. Later, Koenigsberger and Sabberwal 12 also observed that there is a strong relationship between the instantaneous chip thickness and the tangential cutting force. Tlusty and MacNeil 13 examined the variation of cutting forces in at- end milling at steady state and transient cutting conditions. Most of the research to date has dealt with the development of force equations and the modelling of specic cutting pressure under the simplest of conditions. However, Kline et al. 14 have established a mechanistic force model for end-milling under various cutting environments. More recently, Fussell and Srinivasan 15 investigated the capability of the model developed by Kline et al. 14 under varying machine conditions. Fu et al. 16 used the general approach of Martellottis method 10,11 to develop a mechanistic force model for face milling. Armarego and Deshpande 17 studied the effects of cutter runout and developed a computerized cutting force prediction model for at end-milling.Feng and Menq 18,19 reported a rigid system cutting force prediction model for the ball-end milling process. The mechanistic model in this work for predicting cutting forces in band sawing was developed by introducing Martellottis model 10,11 that uses instantaneous undeformed chip thickness and specic cutting pressure. To this end, the specic cutting pressure was obtained by a single-point cutting technique, analogous to y cutting in face milling. Single-point cutting can be performed by using the workpieces with a thickness smaller than the interval between adjacent teeth on the saw. Then, the cutting forces were predicted by applying the specic cutting pressure to a geo-metric model, which 38 considers the geometric prole of a band saw tooth such as left-bent, straight,right-bent tooth. 2. Materials and terminology 2.1. Geometry of saw blade The shape of a saw blade is described in terms of tooth form, set and pitch. Saw tooth forms are referred to as standard, skip, or hook. The standard form gives accurate cuts with a smooth nish 1, and is used in this research. The teeth of a saw blade must be offset on each side to provide clearance for the back of the blade. Set forms include raker, straight, and wave. The raker set is used in general sawing and selected in the research. The pitch of a saw blade is the number of teeth per inch; in this case, the pitch is three. Fig. 1 shows the geometry of the saw blade. Fig.1. Geometry of saw blade 39 Fig. 2. Cutting mechanism of band sawing (a) cutting mechanism of band saw; (b) actual cutting area of saw tooth 3. Development of the force system model 3.1. Specic cutting pressure A rectangular Cartesian coordinate is set up with the origin at the center of edge end and withthe X-axis in the cutting direction. The Z-axis is perpendicular to the machined surface and directed downward. The Y-direction is then determined by the right-hand rule, as shown in Fig.3. The normal cutting force is dened as the X-directional force, that is, normal to the tooth face.The Z-direction is radial to the tool face and directed downward. The Y-direction, lateral to the tool face, is then determined by the right-hand rule.Martellotti 10,11 has proposed that the normal cutting force acting on the chip cross-section is the product of the undeformed chip area and the specic cutting pressure, ks. The lateral and the radial force acting along the cutting edge are obtained by multiplying the normal force by the empirical constants, ky, kz, respectively. By ignoring the effects of tooth geometry, a specic cutting pressure ks can be obtained by dividing the X-directional mean cutting force per tooth 40 by the undeformed chip area A of Eq. (2). Specic cutting coefcients ky, kz of the Y-, Z-directions are obtained by dividing Y-, Z-directional cutting forces by X-normal force, respectively. Accordingly, specic cutting pressure and specic cutting coefcients are written as follows: AFk xx AFk yy ( 3) AFk zz where Fx, Fy and Fz are the mean cutting forces per tooth of X, Y, Z direction, respectively. Fig.3. Forces in cutting edge Fig.4. set patterns 41 3.2. Cutting force model from geometry of saw tooth In the raker set, as shown in Fig. 4, the saw blade has left-bent, straight, and right-bent tooth,iteratively. Therefore, the cutting force model considers these three kinds of geometric shape.First, as shown in Fig. 5, in the case of a left-bent tooth, the instantaneous cutting force per toothcan be modelled by decomposing normal, lateral and radial forces as Fig. 5. Left bent saw tooth. where x and z are the tooth rotational angles with respect to the X, Z axes, respectively, i is the order of tooth, d is the cutting distance. The symbol l means left. Fx(i,d), Fy(i,d), and Fz(i,) is the normal, lateral and radial component of the tooth face as shown in Fig. 5, respectively. FX(i,d), FY(i,d), and FZ(i,d) is the X-, Y-, and Z-directional instantaneous cutting force, respect-ively. Substituting a specic cutting pressure, specic cutting coefcient and undeformed chip area into Eq. (4), we can obtain instantaneous cutting forces. Instantaneous cutting forces of the straight tooth following the left-bent tooth are similar to Eq. (4), except that the normal direction of the undeformed chip area is coincident with the X axis, as shown in Fig. 6. Therefore, cutting forces can be modelled as follows: (4) 42 where s represents straight. On the other hand, similarly to the left-bent tooth, instantaneous cutting forces of the right- bent tooth, as shown in Fig. 7 are modelled as follows: where r represents right. Eqs. (3)(6) are used to describe forces on a single tooth. Therefore, in the case of multi-point Fig. 6. Straight saw tooth. (5) (6) 43 Fig. 7. Right bent saw tooth. cutting, where more than one tooth is engaged simultaneously in cutting, the cutting forces are predicted by summing up Eqs. (4)(6) as follows: where n is the total number of teeth, and is a Kronecker delta. is 1 when the tooth is engaged in the cutting, and zero when the tooth is out of the workpiece. FX, FY, and FZ is X-, Y-, andZ-directional cutting force, respectively. 4. Cutting experiments Fig. 8 shows the horizontal band saw machine (KDBS 450A: Kyoung-Dong Co.) used in the experiment. The tooth blade (Bearcat M42: STARRETT) is a standard tooth form, three pitch,and raker set. In order to measure three directional cutting forces, a tool dynamometer (9257A:KISTLER) is mounted on the table of the saw machine. A xture, to hold the workpiece, is bolted on to the dynamometer. The cutting force signal from the tool dynamometer is amplied by the charge amplier, and is collected by the computer through the A/D converter. The workpiece is a rectangular rod of mild steel (AISI 1010)8x25mm. The distance between each tooth is 8.3mm, so that single-point cutting is possible if we cut parallel (7) 44 to the 8 mm edge. Hence, mean cutting force per tooth can be obtained, and specic cutting pressure can be calculated from the mean cutting force. Whereas Sarwar et al. 8 obtained specic cutting pressure using one tooth cut from a saw blade by turning a cylindrical part Fig. 8. Experimental set-up. with the tooth xed in the tool holder of a turning lathe, we could measure mean cutting force per tooth simply by adjusting the width of the workpiece. Thus, rotating the workpiece to cut a 25 mm thickness engages three teeth in the sawing. The corre-sponding force was measured in the same way and used to check the cutting force model. Experi-mental conditions used in the test are summarized in Table 1. 5. Results and discussion 5.1. Modelling of specic cutting pressur In order to predict cutting forces in sawing, rst, a model of specic cutting pressure is built.To this end, a total of 20 kinds of cutt
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年甘肅省外事辦公室下屬事業(yè)單位真題
- 公司戰(zhàn)略創(chuàng)新案例分析試題及答案
- 江蘇省揚州市樹人學(xué)校2025屆八年級數(shù)學(xué)第二學(xué)期期末統(tǒng)考模擬試題含解析
- 2024年湖北省腫瘤醫(yī)院招聘筆試真題
- 音樂教學(xué)工作計劃
- 計算機(jī)二級VB中的反饋與迭代開發(fā)題及答案
- 程序員職業(yè)素養(yǎng)試題及答案
- 高考作文讀者定位與試題及答案
- 信息處理技術(shù)員考試概況試題及答案
- 材料力學(xué)性能測試溫度影響重點基礎(chǔ)知識點
- 防雷和接地安裝施工組織方案
- 管理學(xué)原理第六章 指揮課件
- 工序標(biāo)準(zhǔn)工時及產(chǎn)能計算表
- 消防安全知識宣傳-主題班會課件(共24張PPT)
- 材料物理與化學(xué)知識點講解
- 生產(chǎn)中的七大浪費(PPT35頁)
- YY∕T 0617-2021 一次性使用人體末梢血樣采集容器
- 《漢服文化介紹》PPT課件(完整版)
- 5以內(nèi)的加減法(可直接打印)
- 車駕管知識題庫查驗業(yè)務(wù)知識試題庫(附答案)
- 鋼結(jié)構(gòu)焊接變形的火焰矯正方法
評論
0/150
提交評論