




已閱讀5頁,還剩7頁未讀, 繼續(xù)免費閱讀
版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
浙江大學2011-2012學年秋冬學期氣動電子技術課程設計題 目 直動式減壓閥特性曲線分析 姓名與學號 林嘉穎 3090100768 指導教師 陶國良 年級與專業(yè) 機械電子工程0902 所在學院 機械工程學系 一 主要參數(shù)及工作原理如圖,直動式減壓閥由主閥芯1,膜片2,彈簧3,調(diào)節(jié)手柄4,主閥體5組成.其中P1為氣源壓力P2為減壓輸出壓力Fs彈簧預緊壓力A為膜片的面積。當P2*Fs時,主閥芯上移,主閥口關閉,使P2逐漸下降。如果是卸壓型直動式減壓器,在主閥芯和彈簧之間(3)裝上小型溢流閥,當P2*AFs時,膜片上移,頂開活塞,氣體便從膜片上方溢流出去。二 方案設計根據(jù)相關參數(shù)使用solidworks對減壓閥進行尺寸設計,再使用matlab及excel對數(shù)據(jù)進行仿真與分析.根據(jù)相關資料,使用solidworks設計尺寸如下:進氣口直徑D1=20mm出氣口直徑D2=20mm 溢流口工作直徑d1=11mm d2=14mm膜片接觸面積設計 Error! Main Document Only.膜片與出氣缸中氣體接觸面積的直徑 d=80mm主閥芯下表面圓直徑為d3=21mm,閥體直徑為d4=20mm。主閥芯直徑為d5=8mm。溢流口設計 Error! Main Document Only.如下表,選擇進口壓力最高1.6MPa,則出口壓力為0.11.0MPa設彈簧最大伸長量為12mm(P1小于特定壓力時,主閥芯全開,此時8mm處恰好在交界口處。當P1大于特定壓力時,理想狀態(tài)是P2保持不變。主閥芯恰好封緊,上升12mm)彈簧彈性系數(shù)k將在后續(xù)中求得。氣體設為標準狀態(tài)。溫度273.15K(0),壓力101.325KPaR=8.314410.00026J/(molK)。空氣密度為=1.293kg/m3三 特性曲線3.1 流量特性曲線理想特性曲線如下:減壓閥理想特性曲線 1受力分析:在流量不變時,以膜和主閥芯為分析對象向上的力:P1對主閥芯的力,P對主閥芯的摩擦力.P2對膜的力.(此處壓力均為相對壓力)向下的力:主要為彈簧對膜的壓力.理想狀況下,忽略摩擦力,則有力的平衡方程:P1*d424+P2*(d2-d12)4=k(-x+x0)+ P2*d42420由于主閥芯尾部有一定的錐度,若以與閥體平行線為分界線(如圖)設在p1=p2=0時楔形口處于下方,邊沿與開口平齊,當p1=p2=1.0MPa時,楔形口與開口接觸。此時x=-x+x0=12mm代入P1*d424+P2*(d2-d12)4=k(x)+ P2*(d42-d12)4; d6=(8+x)mm得彈性系數(shù)k=418.879KN/m取k=420KN/m若設分界線以上壓強為P2,分界線以下為P1,為簡化計算過程,設P1的作用力一直為直徑20mm的圓力的平衡方程修正如下:P1*d424+P2*(d2-d12)4=k(x)+ P2*(d42-d12)4P2=kx-P1*d424d2-d124-(d42-d12)4=4*420x-P1*202(802-202)MPax0,12mm當P2P10.5283時流量為:Q=SeP12kk-1*1RT1(P2P1)2k-(P2P1)k+1k k=1.4;P2P10.5283時,Q=SeP1kRT1(1k+1)k+1k-1;Se為截面有效面積,Se=202-8+x24*10-6m2; x0,12mm;由理想狀態(tài)的減壓特性曲線得:當p10.5283。P1=0.5MPa時,首先對P2=kx-P1*d624d2-d124-(d62-d12)4=4*420x*106-P1*8+x2802-8+x2求反函數(shù)。Matlab求反函數(shù)如下: p1=0.5p1 = 0.5000 syms x p2=(4*420*x-p1*pi*(8+12)2)/(pi*802-pi*(8+12)2) p2 = -(200*pi - 1680*x)/(6000*pi) deltax=finverse(p2) deltax = (25*pi*(x + 1/30)/7 其中上式的deltax為x,x為P2。代入Se中,得: Se=pi*(400-(8+deltax)2 )/4 Se = -(pi*(25*pi*(x + 1/30)/7 + 8)2 - 400)/4 其中的x仍為P2,單位為MPa。Se單位為mm2再通過Q=SeP12kk-1*1RT1(P2P1)2k-(P2P1)k+1k k=1.4;求Q. k=1.4; R=8.31441; T=273.15;Q=(2*k/(k-1)*R*T)*(x/p1 )(2/k)-(x/p1 )(k+1)/k)(1/2)*Se*p1 Q = -(pi*(3553572156649665*(2*x)(10/7)/1152921504606846976 - (3553572156649665*(2*x)(12/7)/1152921504606846976)(1/2)*(25*pi*(x + 1/30)/7 + 8)2 - 400)/8由于用matlab不能求出Q的反函數(shù),因此應用插值的方法,以彈簧伸長量為中間變量,從而求出Q和P2的關系,通過EXCEL來進行插值法描點.設P1=0.5MPa時,編寫如下兩段matlab程序:for i=5.9:0.01:6 p1=0.5; p2=(4*420*i-p1*pi*(8+12)2)/(pi*802-pi*(8+12)2); x=p2; Q =-(pi*(3553572156649665*(2*x)(10/7)/1152921504606846976 - (3553572156649665*(2*x)(12/7)/1152921504606846976)(1/2)*(25*pi*(x + 1/30)/7 + 8)2 - 400)/8; fprintf(%12.8fn,Q)fprintf(%12.8fn,x)endfor i=4:0.1:5.9 p1=0.5; p2=(4*420*i-p1*pi*(8+12)2)/(pi*802-pi*(8+12)2); x=p2; Q =-(pi*(3553572156649665*(2*x)(10/7)/1152921504606846976 - (3553572156649665*(2*x)(12/7)/1152921504606846976)(1/2)*(25*pi*(x + 1/30)/7 + 8)2 - 400)/8; fprintf(%12.8fn,Q)fprintf(%12.8fn,x)end經(jīng)過整理得 流量Q出口壓力P2流量Q出口壓力P2流量Q出口壓力P21.399171660.323173741.016028240.41230050.274414650.493405871.371048210.332086420.963251250.42121320.255099490.494297131.340798750.340999090.906919050.43012590.234228780.49518841.308401170.349911770.846504870.43903850.211342810.496079671.273820390.358824450.78125760.44795120.185698670.496970941.237005880.367737120.710057620.45686390.15594240.49786221.197888230.37664980.631127220.46577660.119030040.498753471.156374670.385562480.541362410.47468930.063518630.499644741.112342690.394475150.434421170.483601900.500536011.065631290.403387830.292482130.492514600.50142728用excel得圖線為: 同理,分別計算當入口壓力P1=0.8MPa,1MPa,0.2MPa時的曲線,(其中Q的特性曲線因為P1的變化而變化,需要通過以下程序段計算每一次Q的函數(shù)式:p1=0.2; syms x p2=(4*420*x-p1*pi*(8+12)2)/(pi*802-pi*(8+12)2); deltax=finverse(p2); Se=pi*(400-(8+deltax)2 )/4; R=8.31441;k=1.4;T=273.15; Q=(2*k/(k-1)*R*T)*(x/p1 )(2/k)-(x/p1 )(k+1)/k)(1/2)*Se*p1P1=0.5MPAP1=0.8MPAP1=1MPAP1=0.2MPA流量Q出口壓力P2流量Q出口壓力P2流量Q出口壓力P2流量Q出口壓力P21.399171660.323173741.392936630.583923061.399272750.68196250.7075010.100535231.371048210.332086421.371927060.58837941.376947020.686418840.7064020.104991571.340798750.340999091.350740060.592835741.354535850.690875180.7037520.109447911.308401170.349911771.329378580.597292071.332044050.695331520.6995520.113904241.273820390.358824451.307845470.601748411.309476480.699787860.6937950.118360581.237005880.367737121.286143510.606204751.286838080.70424420.6864650.122816921.197888230.37664981.264275380.610661091.264133810.708700530.6775320.127273261.156374670.385562481.242243650.615117431.241368710.713156870.6669590.13172961.112342690.394475151.220050770.619573771.218547860.717613210.6546910.136185941.065631290.403387831.197699060.62403011.195676420.722069550.6406590.140642271.016028240.412300511.175190690.628486441.172759620.726525890.6247730.145098610.963251250.421213181.152527690.632942781.149802730.730982230.6069180.149554950.906919050.430125861.129711890.637399121.126811110.735438560.5869480.154011290.846504870.439038541.10674490.641855461.103790210.73989490.5646730.158467630.78125760.447951211.083628150.64631181.080745520.744351240.5398420.162923970.710057620.456863891.060362760.650768131.057682650.748807580.5121250.16738030.631127220.465776571.036949610.655224471.034607270.753263920.4810640.171836640.541362410.474689251.013389210.659680811.011525150.757720260.4460080.176292980.434421170.483601920.989681720.664137150.988442140.76217660.4059730.180749320.292482130.49251460.965826880.668593490.965364220.766632930.3593580.185205660.274414650.493405870.941823940.673049830.942297430.771089270.3032110.1896620.255099490.494297130.917671580.677506170.919247940.775545610.2307670.194118330.234228780.49518840.893367860.68196250.896222040.780001950.1145860.198574670.211342810.496079670.868910090.686418840.873226120.7844582900.203031010.185698670.496970940.844294720.690875180.85026670.7889146300.207487350.15594240.49786220.819517210.695331520.827350440.793370960.119030040.498753470.794571840.699787860.804484120.79782730.063518630.499644740.76945150.70424420.781674680.8022836400.500536010.744147440.708700530.758929210.8067399800.501427280.718648960.713156870.736254940.811196320.6929430.717613210.71365930.815652660.667013650.722069550.691149880.820108990.64084150.726525890.668734460.824565330.614402830.730982230.646421030.829021670.587668530.735438560.624217780.833478010.560602690.73989490.602133140.837934350.533160610.744351240.580175770.842390690.505286210.748807580.558354590.846847020.476908140.753263920.53667880.851303360.447934390.757720260.515157890.85575970.418243920.76217660.493801650.860216040.387673750.766632930.472620230.864672380.355997720.771089270.451624140.869128720.322889340.775545610.430824250.873585060.287851660.780001950.41023190.878041390.250069310.784458290.389858860.882497730.208042810.788914630.369717410.886954070.158413990.793370960.349820370.891410410.089264020.79782730.330181160.8958667500.802283640.310813850.9003230900.806739980.291733250.9047794200.811196320.272954960.9092357600.815652660.254495470.913692100.820108990.236372270.9181484400.824565330.2186040.9226047800.829021670.201210520.9270611200.833478010.184213210.9315174500.837934350.167635070.935973790.151501060.940430130.13583840.944886470.120677030.949342810.106050090.953799150.091994680.958255480.07855280.962711820.065772650.967168160.053710540.97162450.042433670.976080840.032024560.980537180.02258840.984993520.014266650.989449850.007264640.993906193.2 壓力特性曲線由上述公式,約去中間變量x,matlab公式為:syms p1 syms p2 deltax=pi*(75*p2-5*p1)/21; Se=pi*(400-(8+deltax)2 )/4; R=8.31441;k=1.4;T=273.15; Q=(2*k/(k-1)*R*T)*(p2/p1 )(2/k)-(p2/p1 )(k+1)/k)(1/2)*Se*p1Q = -(pi*p1*(3553572156649665*(p2/p1)(10/7)/1152921504606846976 - (3553572156649665*(p2/p1)(12/7)/1152921504606846976)(1/2)*(pi*(5*p1 - 75*p2)/21 - 8)2 - 400)/4由于Q=SeP12kk-1*1RT1(P2P1)2k-(P2P1)k+1k過于復雜,直接用matlab解不出P2的值。由理想特性曲線及老師上課筆記得P2P11.設P2P1=0.85,代入上式,得Q的簡化表達式。因此由matlab算法,設Q=1dm3/s,有 p2=solve(1=-(pi*p1*(3553572156649665*(0.85)(10/7)/1152921504606846976 - (3553572156649665*(0.85)(12/7)/1152921504606846976)(1/2)*(pi*(5*p1 - 75*x)/21 - 8)2 - 400)/4) p2 = (1.0*10(-67)*(4.8026710038503888982870641436426*1066*(- 4.6588965684808449721090220054471*10(-34)*p14 + 9.9655774465618838997905594373673*10(-33)*p13 + 13.775603498253215348712157917925*p12 - 4.164349376412757690974805339266*p1)(1/2) - 7.1301414505169110424459925990886*1066*p1 + 6.6666666666666666666666666666667*1065*p12)/p1 -(1.0*10(-67)*(7.1301414505169110424459925990886*1066*p1 + 4.8026710038503888982870641436426*1066*(- 4.6588965684808449721090220054471*10(-34)*p14 + 9.9655774465618838997905594373673*10(-33)*p13 + 13.775603498253215348712157917925*p12 - 4.164349376412757690974805339266*p1)(1/2) - 6.6666666666666666666666666666667*1065*p12)/p1 對結果進行簡化: p=simplify(p2) p = 0.066666666666666666666666666666667*p1 + (0.48026710038503888982870641436426*(- 4.6588965684808449721090220054471*10(-34)*p14 + 9.9655774465618838997905594373673*10(-33)*p13 + 13.775603498253215348712157917925*p12 - 4.164349376412757690974805339266*p1)(1/2)/p1 - 0.71301414505169110424459925990886 0.066666666666666666666666666666667*p1 - (0.48026710038503888982870641436426*(- 4.6588965684808449721090220054471*10(-34)*p14 + 9.9655774465618838997905594373673*10(-33)*p13 + 13.775603498253215348712157917925*p12 - 4.164349376412757690974805339266*p1)(1/2)/p1 - 0.71301414505169110424459925990886取P20的值,得出P2與P1的關系for p1=0.4:0.05:2 p2=0.066666666666666666666666666666667*p1 + (0.48026710038503888982870641436426*(- 4.6588965684808449721090220054471*10(-34)*p14 + 9.9655774465618838997905594373673*10(-33)*p13 + 13.775603498253215348712157917925*p12 - 4.164349376412757690974805339266*p1)(1/2)/p1 - 0.71301414505169110424459925990886;fprintf(%12.8fn,p2)end 由此得P2的值:同理,分別解出Q=0.4,0.8,1.2時P1與P2的關系,得:(單位均為MPa)P1Q=0.4的P2Q=0.8的P2Q=1.2的P2Q=1的P20.05-0.70968081-0.7096808-0.7096808-0.709680810.1-0.70634748-0.7063475-0.7063475-0.706347480.15-0.703014150.08184749-0.7030142-0.703014150.2-0.699680810.42119559-0.6996808-0.699680810.25-0.374287120.58450286-0.6963475-0.696347480.30.091847490.68420045-0.6930142-0.693014150.350.301240770.75242839-0.6896808-0.031616310.40.434528930.80257768-0.14244520.194616090.450.529345520.841329690.101847490.338216420.50.601169530.872416140.254209030.441195590.550.657928230.898092740.363710850.519899360.60.704200450.919806050.447862260.582590090.650.742847550.938527620.515282650.634039790.70.775761720.954934620.570908460.677244950.750.804249470.969513780.61783620.714200450.80.829244340.982624040.658132160.746293790.850.851432390.994535990.693239140.774523610.90.8
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 粗加工考試題及答案
- 速寫創(chuàng)作考試題及答案
- 學生興趣愛好培養(yǎng)發(fā)展
- 2025年安徽省中考地理試題(解析版)
- 心理健康師資加強
- 第三章 產(chǎn)業(yè)區(qū)位因素復習課件+2024-2025學年高中地理人教版(2019)必修第二冊
- 構建智慧校園管理服務體系方案提
- 心理師資與輔導力量的加強
- 校園信息學創(chuàng)新能力賽培養(yǎng)編程思
- 寧夏銀川六中2025屆化學高二下期末綜合測試試題含解析
- 人教版(2023版)初中語文九年級上冊全冊同步練習+單元綜合訓練+專項訓練+期中期未測試合集(含答案)【可編輯可打印】
- 電磁兼容中抗擾度試驗教學課件
- 中國郵政儲蓄銀行理財考試真題模擬匯編(共719題)
- 醫(yī)務科崗前培訓
- 市政雨污水管道清污清淤工程地下有限空間作業(yè)專項方案2020年10月10
- GB/T 8685-2008紡織品維護標簽規(guī)范符號法
- 醫(yī)療器械行業(yè)市場部人員崗位職責
- 旅行社導游帶團操作流程
- 部編版小學道德與法治三年級下冊期末質量檢測試卷【含答案】5套
- 怎樣當好一名師長
- DB21T 3354-2020 遼寧省綠色建筑設計標準
評論
0/150
提交評論