(黃岡名師)高考數(shù)學(xué)核心素養(yǎng)提升練七十2參數(shù)方程理(含解析)新人教A版選修.docx_第1頁(yè)
(黃岡名師)高考數(shù)學(xué)核心素養(yǎng)提升練七十2參數(shù)方程理(含解析)新人教A版選修.docx_第2頁(yè)
(黃岡名師)高考數(shù)學(xué)核心素養(yǎng)提升練七十2參數(shù)方程理(含解析)新人教A版選修.docx_第3頁(yè)
(黃岡名師)高考數(shù)學(xué)核心素養(yǎng)提升練七十2參數(shù)方程理(含解析)新人教A版選修.docx_第4頁(yè)
(黃岡名師)高考數(shù)學(xué)核心素養(yǎng)提升練七十2參數(shù)方程理(含解析)新人教A版選修.docx_第5頁(yè)
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

核心素養(yǎng)提升練七十參 數(shù) 方 程(30分鐘50分)1. (10分)已知直線l的參數(shù)方程為(t為參數(shù)),以坐標(biāo)原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸,建立極坐標(biāo)系,曲線C的方程為sin -cos 2=0.(1)求曲線C的直角坐標(biāo)方程.(2)寫(xiě)出直線l與曲線C交點(diǎn)的一個(gè)極坐標(biāo).【解析】(1)因?yàn)閟in -cos 2=0, sin -2 cos 2=0,即y-x2=0.(2)將(t為參數(shù)),代入y-x2=0得,+t-=0,解得t=0.從而,交點(diǎn)坐標(biāo)為(1,),所以,交點(diǎn)的一個(gè)極坐標(biāo)為.2. (10分) (2018安陽(yáng)模擬)設(shè)直線l的參數(shù)方程為(t為參數(shù)),若以直角坐標(biāo)系xOy的原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸,選擇相同的長(zhǎng)度單位建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為sin 2=4cos .(1)將曲線C的極坐標(biāo)方程化為直角坐標(biāo)方程,并指出曲線C是什么曲線.(2)若直線l與曲線C交于A,B兩點(diǎn),求|AB|.【解析】(1)由于sin 2=4cos ,所以2sin 2=4cos ,即y2=4x,因此曲線C表示頂點(diǎn)在原點(diǎn),焦點(diǎn)在x軸上的拋物線.(2)(t為參數(shù)),化為普通方程為y=2x-1,代入y2=4x并整理得4 x2-8x+1=0,設(shè)A(x1,y1),B(x2,y2)所以|AB|=|x2-x1|=.3. (10分) (2018成都模擬)在直角坐標(biāo)系xOy中,圓C的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸,建立極坐標(biāo)系.(1)寫(xiě)出圓C的極坐標(biāo)方程及圓心C的極坐標(biāo).(2)直線l的極坐標(biāo)方程為=(R),與圓C交于M,N兩點(diǎn),求CMN的面積.【解析】(1)極坐標(biāo)(,)與直角坐標(biāo)(x,y)的對(duì)應(yīng)關(guān)系為所以根據(jù)sin 2+cos 2=1,消元得+(sin -1)2=4,化簡(jiǎn)得=4sin ,因?yàn)閳A心C的直角坐標(biāo)為(,1),所以極坐標(biāo)為,(2)聯(lián)立得交點(diǎn)極坐標(biāo)M(0,0),N,所以|MN|=2,|MC|=2,CMN=-=,所以CMN的面積=22sin =.4. (10分) (2018玉溪模擬)已知曲線C的參數(shù)方程為(為參數(shù)),在同一平面直角坐標(biāo)系中,將曲線C上的點(diǎn)按坐標(biāo)變換得到曲線C.(1)求曲線C的普通方程.(2)若點(diǎn)A在曲線C上,點(diǎn)B(3,0),當(dāng)點(diǎn)A在曲線C上運(yùn)動(dòng)時(shí),求AB中點(diǎn)P的軌跡方程.【解析】(1)將(為參數(shù)),代入得C的參數(shù)方程為(為參數(shù)),曲線C的普通方程為x2+y2=1.(2)設(shè)P(x,y),A(x0,y0),又B(3,0),且AB中點(diǎn)為P,所以又點(diǎn)A在曲線C上,所以代入C得普通方程+=1,得(2x-3)2+(2y)2=1,所以動(dòng)點(diǎn)P的軌跡方程為+y2=.5. (10分) (2019泰安模擬)在平面直角坐標(biāo)系xOy中曲線C1過(guò)點(diǎn)P(a,1),其參數(shù)方程為(t為參數(shù),aR),以O(shè)為極點(diǎn),x軸非負(fù)半軸為極軸,建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為cos 2+4cos -=0.(1)求曲線C1的普通方程和曲線C2的直角坐標(biāo)方程.(2)已知曲線C1與曲線C2交于A,B兩點(diǎn),且|PA|=2|PB|,求實(shí)數(shù)a的值.【解析】(1)曲線C1的參數(shù)方程為(t為參數(shù),aR),所以其普通方程為x-y-a+1=0,曲線C2的極坐標(biāo)方程為cos 2+4cos -=0,所以2 cos 2+4cos -2=0,所以x2+4x-x2-y2=0,即曲線C2的直角坐標(biāo)方程為y2=4x.(2)設(shè)A,B兩點(diǎn)所對(duì)應(yīng)參數(shù)分別為t1,t2,聯(lián)立化簡(jiǎn)得2t2-2t+1-4a=0,要有兩個(gè)不同的交點(diǎn),則=-42(1-4a)0,即a0,由根與系數(shù)的關(guān)系得根據(jù)參數(shù)方程的幾何意義可知|PA|=2|t1|,|PB|=2|t2|,又由|PA|=2|PB|,可得2|t1|=22|t2|,即t1=2t2或t1=-2t2,所以當(dāng)t1=2t2時(shí),有t

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論