


全文預(yù)覽已結(jié)束
下載本文檔
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
ComplexityAnalysisofsleepEEGsignalLiLingWangRuiping*dept.ofbiomedicalengineeringBeijingJiaotongUniversityBeijing,AbstractThecomplexityoftheEEGtimeseriesduringsleepingisinvestigated.TherelationshipsbetweenthesesleepstatesandthecomplexitiesoftheEEGareassessed.LempelZivcomplexityisusedasanovelindexforquantifyingthecomplexityoftheEEGtimeseriesduringdifferentsleepstates.ExperimentalresultsshowthattheLempelZiv(LZ)complexityoftheEEGtimeseriesduringactive(REM,rapideyemovement)sleeptendstobehigherthanduringquiet(NREM,nonrapideyemovement)sleep,andthecomplexityduringwakeishigherthanduringsleep.TheLempelZivcomplexitycaneffectivelydistinguishthesleepstatesofthebrain.Keywords-sleepEEG;sleepstates;LempelZivcomplexity(LZ)I.INTRODUCTIONTheelectroencephalogram(EEG)signalsreflecttheelectricalactivityofthebrain.Sleepstudieshavegrowntoencompassabroadrangeoftechnologiesemployedtostudyanddiagnoseavarietyofsleepdisorders.Thestudyofthebrainelectricalactivity,throughtheelectroencephalographicrecords,isoneofthemostimportanttoolsforthestudyofsleep.Duringsleep,advancedcentralandaseriesofplantsystemchange.In1968,theinstituteofthehumanbrainintheUniversityofCaliforniareleasedthedefinitionofsleepandtechnicalstandards.AccordingtothedifferentformsandfeaturesofEEG,EMGandEOG,sleepisdividedintowakeperiod(W),rapideyemovement(REM),nonrapideyemovement(NREM),including(S1,S2,S3andS4period)6.FollowingthenonlinearcharacteristicofsleepEEG,researchershavewitnessedagrowinguseofvariousnonlinearapproachesinfeatureextractionofEEGsignalsintherecentyears,suchasLyapunovexponents,complexity,spectrumentropyetc.Allthesemethodshavetheirrespectivemeritsanddemerits.TheEEGdataofdifferentsleepingstagesareusedtocalculatethecorrespondingcharacteristicparameters.Inthestudy,thesectiongivesthebriefintroductionsofcomplexity,thedataweuseandhowtoanalyzethedata.Thesectiongivesthecalculatedresultsanddiscussions.Finally,thesectionpresentssomeremarksbasedonthestudy1.II.METHODA.ComplexityLempleandZivdefinedthatalimitedlongseriesofcomplexityshouldbethespeedofnewpatternalongwiththesequenceslengthincreased2.Inrecentyears,LZcomplexityhasbeenappliedextensivelyinbiomedicalsignalsanalysisasametrictoestimatethecomplexityofdiscrete-timephysiologicsignals10.LZcomplexityhasalsobeenusedtostudybrainfunction,braininformationtransmission,EEGcomplexityinpatientswithdiseases,andsleepEEGsignals.ThecomplexityofEEGsequenceperformsrandomdegreeoftheEEGsequenceandreflectsthesizeoftheinformation2.LZcomplexityanalysisisbasedonacoarse-grainingofthemeasurements.Inthecontextofbiomedicalsignalanalysis,typicallythediscrete-timebiomedicalsignalisconvertedintoabinarysequence.Incomparisionwiththethreshold,thesignaldataareconvertedintoa0-1sequencePasfollows:()()()1,2,.,(1),SsssrQsr=+(1)Where()()0,1,dxiTsiotherwise=(2)Usuallythemedianisusedasthethresholdbecauseofitsrobustnesstooutliers.Previousstudieshaveshownthat0-1conversionisadequatetoestimatetheLZcomplexityinbiomedicalsignals.InordertocomputeLZcomplexity,thesequencePisscannedformlefttorightandthecomplexitycounterisincreasedbyoneuniteverytimeanewsubsequenceofconsecutivecharactersisencountered.Thecomplexitymeasurecanbeestimatedusingthefollowingalgorithm.1)LetSandQdenotetwosubsequencesofPandSQbetheconcatenationofSandQ,whilesequenceSQvisderivedfromSQafteritslastcharacterisdeleted(vdenotesthe978-1-4244-4713-8/10/$25.002010Crownoperationofdeletingthelastcharacterinthesequence).Let()2sdenotethevocabularyofalldifferentsubsequencesofSQv.Atthebeginning,()cn=1,S=()1s,Q=()2s,therefore,SQv=()1s.2)Ingeneral,()()()1,2,.,(1),SsssrQsr=+then()()()1,2,.,;SQvsssr=ifQbelongsto()vSQv,thenQisasequenceofSQv,notanewsequence.3)RenewQtobe()1sr+,()2sr+andjudgeifQbelongsto()vSQvornot.4)RepeatthepreviousstepsuntilQdoesnotbelongto()vSQv.Now()()()1,2,.,Qsrsrsri=+isnotasubsequenceofSQv=()()()1,2,.,1sssri+,soincrease()cnbyone.5)Thereafter,Sisrenewedtobe(1),(2),.,()Ssssri=+,and(1)Qsri=+.TheaboveprocedureisrepeateduntilQisthelastcharacter.AtthistimethenumberofdifferentsubsequencesinPthemeasureofcomplexityis()cn.Inordertoobtainacomplexitymeasurewhichisindependentofthesequencelength,()cnmustbenormalized.Ifthelengthofthesequenceisnandthenumberofdifferentsymbolsinthesymbolsetis,ithasbeenprovedthattheupperboundof()cnisgivenby()(1)log()nancnn=(3)Wherenisasmallquantityand()0nn.Ingeneral,()lognnistheupperboundof()cn,wherethebaseofthelogarithmis,i.e.,lim()()log()nncnbnn=(4)Fora0-1sequence,=2,therefore()2log()nbnn=(5)And()cncanbenormalizedvia()bn.()()()cnCnbn=(6)Where()Cn,thenormalizedLZcomplexity,reflectsthearisingrateofnewpatternsinthesequence17810.ComplexitiesofEEGaredifferentcorrespondingtothedifferentsleepstages.Accordingtotheexperienceandanalysis,thecomplexityofEEGsequenceshowstheorderlydegreeofthebrainneuronsprocessinginformationactivities.B.ExperimentDataInthisstudy,theEEGdataisfromMIT/BIHPolysomnographicdatabase.Thisdatabaseisacollectionofrecordingsofmultiplephysiologicsignalsduringsleep.SubjectsweremonitoredinBostonsBethIsraelHospitallaboratory.Therecorddataevery30sisfollowedbyaannotationandthisannotaitoncontainssleepstages,heartconditionsandbreathing.Inthisstudy,wechoose“slp01a,slp01b,slp02a,slp02b,slp03,slp04,slp14,slp48”toanalyze.TheEEGchannelsareC4-A1、C4-A1、O2-A1、O2-A1、C3-O1、C3-O1、C3-O1、C3-O1.Thesedatalengthare2h,3h,3h,214h,6h,6h,6h,1016handthesamplingfrequencyis250HZ,markingthecorrespondingsleepingstagesevery30s.C.DATAAnalysisandResultsThestudygot2500pointsfromdifferentsleepingstages10sabouteveryobject,analyzedthesedataandcalculatedthecomplexities.OurprogramisinMATLABandtheresultsobtainedareshowedinTABLE1andFigure.1.TABLE1.Thecomplexityofeachsleepingstage(average)SubjectWakeperiodNREMperiodREMperiodperiodperiodperiodperiodSlp01a0.5012-0.46120.36510.22580.3206Slp01b0.79460.34540.3183-0.3564Slp02a0.62760.32460.27540.21670.20320.2122Slp02b0.77930.75630.2664-0.5508Slp030.39280.36800.26640.2099-0.2799Slp040.66210.58240.58020.2731-0.6073Slp140.41090.27990.24380.2032-0.5057Slp480.78560.51470.50570.1896-0.3251average0.61930.45300.36470.24290.21450.3947Figure.1.Theanalysisofthecomplexityofeachsleepingstage.Fromthetable1,thereistheconclusion:fromWakeperiodto、periodinNREMperiod,thecomplexitiesareallbythemaximumreducinggradually,then,backtoclosetoperiodandperiodwhenREMperiod.TheFig.1alsocanprovetheconclusion.Wefoundweaknonlinearsignaturesinallsleepstagesinthisstudy.Theresultsshowthatduringsleeptherearevarioustransitionsandthedegreeofchaoticityisdependentonthestageofsleep.ThecomplexityofEEGsequenceshowstheorderlydegreeofthebrainneuronsprocessinginformationactivities.Asaresult,fromshallowtodeepsleep,theoutcomemeansthediminutionoffreedomofbrainactivity.InthecaseofsleepEEGthesleepstagesareconsideredasdistinctpsychophysiologicalstates789.CONCLUDINGREMARKSInthispaper,thisstudycalculatedcomplexityofsleepingEEGsignalsofeighthealthyadults.Theresultsshowthatthenonlinearfeaturecanreflectsleepingstageadequately.Themethodisusefulinautomaticrecognitionofsleepstages.Butithassomelimitations.Complexityisalsosimplebutlosesinformationdetailsinitspreprocessingoforiginalmeasurementdata1.Duetothecoarseningpretreatmentalgorithmofcomplexityandanalysistimesequencefromone-dimensionalangle,thealgorithmofcomplexityiseasytoloseinformation.Theeffectsoftheotherfactorssuchasageandgenderontheperformanceofthenonlinearfeatureextractionmethodarestillunderactivetudy2.Inspiteofthesedifficultiesandshortcoming,complexityisusefulfortheanalysisofsleepEEG.REFERENCES1Wei-XingHe,Xiang-GuoYan,Xiao-PingChen,andHuiLiu,“NonlinearFeatureExtractionofSleepingEEGSignals”,Proceedingsofthe2005IEEE,EngineeringinMedicineandBiology27thAnnualConference.Shanghai,China,September1-4,2005.2DongGuo-Ya,WuXi-Yao,”ThecomparisonBetweenApproximateEntropyandComplexityintheStudyofSleepEEG”,BeijingUniversityofScienceandTechnolongy.3LuWeimin,LiuFubin,“AnalysisoftheNonlinearDynamicsforSleepEEG”,ChinaMedicalEquipment,2008,5(2):16-20.4FuXiaohua,LiHongpei,“SleepandHealth”,ChinaMedicalJournals,2003,38(8).5DingBaoxi,ChenZhihua,ZhaoLi,“CorrelationAnalysisofEEGData”,ProgressinModernBiomedicine,2008,8(1).6LIUHui,HEWei-xing,CHENXiao-ping,“EEGtime-seriesanalysisusing
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 名下財(cái)產(chǎn)轉(zhuǎn)讓協(xié)議書
- 單位電腦維護(hù)協(xié)議書
- 品牌共同運(yùn)營(yíng)協(xié)議書
- 賣房按揭還款協(xié)議書
- 廠家終身質(zhì)保協(xié)議書
- 2025我與媽媽簽訂“家務(wù)”合同
- 員工工作合同協(xié)議書
- 2025【建筑工程設(shè)計(jì)咨詢合同】 河南城輝建設(shè)工程設(shè)計(jì)咨詢有限公司
- 商務(wù)合伙合同協(xié)議書
- 廠房吊裝拆除協(xié)議書
- 營(yíng)銷策劃 -上汽大眾“11.11”眾享購車季網(wǎng)絡(luò)直播會(huì)
- 領(lǐng)導(dǎo)干部任前廉政法規(guī)知識(shí)考試題庫及答案
- YB/T 2010-2003鐵路軌距擋板用熱軋型鋼
- GB/T 1221-2007耐熱鋼棒
- GB 20827-2007職業(yè)潛水員體格檢查要求
- 住院部臨床科室醫(yī)療質(zhì)量考核表
- 公司經(jīng)營(yíng)管理手冊(cè)目錄
- 基礎(chǔ)會(huì)計(jì)練習(xí)題及答案
- 5萬噸鋼筋加工配送中心項(xiàng)目
- 初中數(shù)學(xué)北師大九年級(jí)下冊(cè) 直角三角形的邊角關(guān)系謝榮華 教學(xué)設(shè)計(jì)《銳角三角函數(shù)》
- 老年患者營(yíng)養(yǎng)支持途徑及配方選擇課件
評(píng)論
0/150
提交評(píng)論