


全文預(yù)覽已結(jié)束
下載本文檔
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
ComplexityAnalysisofsleepEEGsignalLiLingWangRuiping*dept.ofbiomedicalengineeringBeijingJiaotongUniversityBeijing,AbstractThecomplexityoftheEEGtimeseriesduringsleepingisinvestigated.TherelationshipsbetweenthesesleepstatesandthecomplexitiesoftheEEGareassessed.LempelZivcomplexityisusedasanovelindexforquantifyingthecomplexityoftheEEGtimeseriesduringdifferentsleepstates.ExperimentalresultsshowthattheLempelZiv(LZ)complexityoftheEEGtimeseriesduringactive(REM,rapideyemovement)sleeptendstobehigherthanduringquiet(NREM,nonrapideyemovement)sleep,andthecomplexityduringwakeishigherthanduringsleep.TheLempelZivcomplexitycaneffectivelydistinguishthesleepstatesofthebrain.Keywords-sleepEEG;sleepstates;LempelZivcomplexity(LZ)I.INTRODUCTIONTheelectroencephalogram(EEG)signalsreflecttheelectricalactivityofthebrain.Sleepstudieshavegrowntoencompassabroadrangeoftechnologiesemployedtostudyanddiagnoseavarietyofsleepdisorders.Thestudyofthebrainelectricalactivity,throughtheelectroencephalographicrecords,isoneofthemostimportanttoolsforthestudyofsleep.Duringsleep,advancedcentralandaseriesofplantsystemchange.In1968,theinstituteofthehumanbrainintheUniversityofCaliforniareleasedthedefinitionofsleepandtechnicalstandards.AccordingtothedifferentformsandfeaturesofEEG,EMGandEOG,sleepisdividedintowakeperiod(W),rapideyemovement(REM),nonrapideyemovement(NREM),including(S1,S2,S3andS4period)6.FollowingthenonlinearcharacteristicofsleepEEG,researchershavewitnessedagrowinguseofvariousnonlinearapproachesinfeatureextractionofEEGsignalsintherecentyears,suchasLyapunovexponents,complexity,spectrumentropyetc.Allthesemethodshavetheirrespectivemeritsanddemerits.TheEEGdataofdifferentsleepingstagesareusedtocalculatethecorrespondingcharacteristicparameters.Inthestudy,thesectiongivesthebriefintroductionsofcomplexity,thedataweuseandhowtoanalyzethedata.Thesectiongivesthecalculatedresultsanddiscussions.Finally,thesectionpresentssomeremarksbasedonthestudy1.II.METHODA.ComplexityLempleandZivdefinedthatalimitedlongseriesofcomplexityshouldbethespeedofnewpatternalongwiththesequenceslengthincreased2.Inrecentyears,LZcomplexityhasbeenappliedextensivelyinbiomedicalsignalsanalysisasametrictoestimatethecomplexityofdiscrete-timephysiologicsignals10.LZcomplexityhasalsobeenusedtostudybrainfunction,braininformationtransmission,EEGcomplexityinpatientswithdiseases,andsleepEEGsignals.ThecomplexityofEEGsequenceperformsrandomdegreeoftheEEGsequenceandreflectsthesizeoftheinformation2.LZcomplexityanalysisisbasedonacoarse-grainingofthemeasurements.Inthecontextofbiomedicalsignalanalysis,typicallythediscrete-timebiomedicalsignalisconvertedintoabinarysequence.Incomparisionwiththethreshold,thesignaldataareconvertedintoa0-1sequencePasfollows:()()()1,2,.,(1),SsssrQsr=+(1)Where()()0,1,dxiTsiotherwise=(2)Usuallythemedianisusedasthethresholdbecauseofitsrobustnesstooutliers.Previousstudieshaveshownthat0-1conversionisadequatetoestimatetheLZcomplexityinbiomedicalsignals.InordertocomputeLZcomplexity,thesequencePisscannedformlefttorightandthecomplexitycounterisincreasedbyoneuniteverytimeanewsubsequenceofconsecutivecharactersisencountered.Thecomplexitymeasurecanbeestimatedusingthefollowingalgorithm.1)LetSandQdenotetwosubsequencesofPandSQbetheconcatenationofSandQ,whilesequenceSQvisderivedfromSQafteritslastcharacterisdeleted(vdenotesthe978-1-4244-4713-8/10/$25.002010Crownoperationofdeletingthelastcharacterinthesequence).Let()2sdenotethevocabularyofalldifferentsubsequencesofSQv.Atthebeginning,()cn=1,S=()1s,Q=()2s,therefore,SQv=()1s.2)Ingeneral,()()()1,2,.,(1),SsssrQsr=+then()()()1,2,.,;SQvsssr=ifQbelongsto()vSQv,thenQisasequenceofSQv,notanewsequence.3)RenewQtobe()1sr+,()2sr+andjudgeifQbelongsto()vSQvornot.4)RepeatthepreviousstepsuntilQdoesnotbelongto()vSQv.Now()()()1,2,.,Qsrsrsri=+isnotasubsequenceofSQv=()()()1,2,.,1sssri+,soincrease()cnbyone.5)Thereafter,Sisrenewedtobe(1),(2),.,()Ssssri=+,and(1)Qsri=+.TheaboveprocedureisrepeateduntilQisthelastcharacter.AtthistimethenumberofdifferentsubsequencesinPthemeasureofcomplexityis()cn.Inordertoobtainacomplexitymeasurewhichisindependentofthesequencelength,()cnmustbenormalized.Ifthelengthofthesequenceisnandthenumberofdifferentsymbolsinthesymbolsetis,ithasbeenprovedthattheupperboundof()cnisgivenby()(1)log()nancnn=(3)Wherenisasmallquantityand()0nn.Ingeneral,()lognnistheupperboundof()cn,wherethebaseofthelogarithmis,i.e.,lim()()log()nncnbnn=(4)Fora0-1sequence,=2,therefore()2log()nbnn=(5)And()cncanbenormalizedvia()bn.()()()cnCnbn=(6)Where()Cn,thenormalizedLZcomplexity,reflectsthearisingrateofnewpatternsinthesequence17810.ComplexitiesofEEGaredifferentcorrespondingtothedifferentsleepstages.Accordingtotheexperienceandanalysis,thecomplexityofEEGsequenceshowstheorderlydegreeofthebrainneuronsprocessinginformationactivities.B.ExperimentDataInthisstudy,theEEGdataisfromMIT/BIHPolysomnographicdatabase.Thisdatabaseisacollectionofrecordingsofmultiplephysiologicsignalsduringsleep.SubjectsweremonitoredinBostonsBethIsraelHospitallaboratory.Therecorddataevery30sisfollowedbyaannotationandthisannotaitoncontainssleepstages,heartconditionsandbreathing.Inthisstudy,wechoose“slp01a,slp01b,slp02a,slp02b,slp03,slp04,slp14,slp48”toanalyze.TheEEGchannelsareC4-A1、C4-A1、O2-A1、O2-A1、C3-O1、C3-O1、C3-O1、C3-O1.Thesedatalengthare2h,3h,3h,214h,6h,6h,6h,1016handthesamplingfrequencyis250HZ,markingthecorrespondingsleepingstagesevery30s.C.DATAAnalysisandResultsThestudygot2500pointsfromdifferentsleepingstages10sabouteveryobject,analyzedthesedataandcalculatedthecomplexities.OurprogramisinMATLABandtheresultsobtainedareshowedinTABLE1andFigure.1.TABLE1.Thecomplexityofeachsleepingstage(average)SubjectWakeperiodNREMperiodREMperiodperiodperiodperiodperiodSlp01a0.5012-0.46120.36510.22580.3206Slp01b0.79460.34540.3183-0.3564Slp02a0.62760.32460.27540.21670.20320.2122Slp02b0.77930.75630.2664-0.5508Slp030.39280.36800.26640.2099-0.2799Slp040.66210.58240.58020.2731-0.6073Slp140.41090.27990.24380.2032-0.5057Slp480.78560.51470.50570.1896-0.3251average0.61930.45300.36470.24290.21450.3947Figure.1.Theanalysisofthecomplexityofeachsleepingstage.Fromthetable1,thereistheconclusion:fromWakeperiodto、periodinNREMperiod,thecomplexitiesareallbythemaximumreducinggradually,then,backtoclosetoperiodandperiodwhenREMperiod.TheFig.1alsocanprovetheconclusion.Wefoundweaknonlinearsignaturesinallsleepstagesinthisstudy.Theresultsshowthatduringsleeptherearevarioustransitionsandthedegreeofchaoticityisdependentonthestageofsleep.ThecomplexityofEEGsequenceshowstheorderlydegreeofthebrainneuronsprocessinginformationactivities.Asaresult,fromshallowtodeepsleep,theoutcomemeansthediminutionoffreedomofbrainactivity.InthecaseofsleepEEGthesleepstagesareconsideredasdistinctpsychophysiologicalstates789.CONCLUDINGREMARKSInthispaper,thisstudycalculatedcomplexityofsleepingEEGsignalsofeighthealthyadults.Theresultsshowthatthenonlinearfeaturecanreflectsleepingstageadequately.Themethodisusefulinautomaticrecognitionofsleepstages.Butithassomelimitations.Complexityisalsosimplebutlosesinformationdetailsinitspreprocessingoforiginalmeasurementdata1.Duetothecoarseningpretreatmentalgorithmofcomplexityandanalysistimesequencefromone-dimensionalangle,thealgorithmofcomplexityiseasytoloseinformation.Theeffectsoftheotherfactorssuchasageandgenderontheperformanceofthenonlinearfeatureextractionmethodarestillunderactivetudy2.Inspiteofthesedifficultiesandshortcoming,complexityisusefulfortheanalysisofsleepEEG.REFERENCES1Wei-XingHe,Xiang-GuoYan,Xiao-PingChen,andHuiLiu,“NonlinearFeatureExtractionofSleepingEEGSignals”,Proceedingsofthe2005IEEE,EngineeringinMedicineandBiology27thAnnualConference.Shanghai,China,September1-4,2005.2DongGuo-Ya,WuXi-Yao,”ThecomparisonBetweenApproximateEntropyandComplexityintheStudyofSleepEEG”,BeijingUniversityofScienceandTechnolongy.3LuWeimin,LiuFubin,“AnalysisoftheNonlinearDynamicsforSleepEEG”,ChinaMedicalEquipment,2008,5(2):16-20.4FuXiaohua,LiHongpei,“SleepandHealth”,ChinaMedicalJournals,2003,38(8).5DingBaoxi,ChenZhihua,ZhaoLi,“CorrelationAnalysisofEEGData”,ProgressinModernBiomedicine,2008,8(1).6LIUHui,HEWei-xing,CHENXiao-ping,“EEGtime-seriesanalysisusing
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 居民公共活動方案
- 少先隊鄉(xiāng)下活動方案
- 干部講壇活動方案
- 小班踏春活動方案
- 居雅裝飾公司優(yōu)惠活動方案
- 小學(xué)走進(jìn)樹木活動方案
- 小滿周年活動策劃方案
- 居家好物共享活動方案
- 工會職工普法活動方案
- 尾盤圈層活動方案
- 2025年湖北省中考道德與法治試卷真題(標(biāo)準(zhǔn)含答案)
- 化妝品標(biāo)簽審核管理制度
- 2025年銅仁沿河土家族自治縣“特崗計劃”招聘考試筆試試題(含答案)
- 和美鄉(xiāng)村示范村規(guī)范方案
- 某鎮(zhèn)“十五五”發(fā)展規(guī)劃編制思路
- 2025春季學(xué)期國開電大本科《人文英語4》一平臺機(jī)考真題及答案(第四套)
- 政府采購評審專家考試真題庫(帶答案)
- (2025)國家版圖知識競賽(附含答案)
- 2025年高考志愿填報-12種選科組合專業(yè)對照表
- 2025甘肅省農(nóng)墾集團(tuán)有限責(zé)任公司招聘生產(chǎn)技術(shù)人員145人筆試參考題庫附帶答案詳解析版
- 牙科技術(shù)入股合作協(xié)議書
評論
0/150
提交評論