




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、Design Strategies for Recommender Systems,Rashmi Sinha Jan 2006, UIE Web App Summit,UIE Web App Summit,2,What are Recommender Systems?,Circa 2001 Systems that attempt to predict items, e.g., movies, music, books, that a user may be interested in (given some information about the users profile) e.g.,
2、 Amazon people who liked this book also liked, Netflix recommendations Circa 2006 Systems that help people find information that will interest them, by facilitating social / conceptual connections or other means Pandora, Last.fm,UIE Web App Summit,3,Designing different finding experiences,Some exper
3、iences guide user, others just point in a general direction Desired experience depends on user task, time constraints, mood etc.,Theres more than one way to get from here to there,UIE Web App Summit,4,User experience in search/browse interfaces,More controlled experience Every movement (forward, mak
4、ing a turn) is a conscious choice System should provide information at every step If user takes wrong turn, go back a step or two / start again,Like driving a car,UIE Web App Summit,5,User Experience with Recommender Systems,User has less control over specifics of interaction System does not provide
5、 information about specifics of action More of a “black box” model (some input from user, output from systems),Like riding a roller coaster,Recommender Systems Circa 2001,UIE Web App Summit,7,what movies you should watch (Reel, RatingZone, Amazon) what music you should listen to (CDNow, Mubu, Gigabe
6、at) what websites you should visit (Alexa) what jokes you will like (Jester) where to go on vacation (TripleHop) sense that others are out there User profiles and photos put a human face on the system interactions,Spotback,UIE Web App Summit,37,What people are doing on Digg,UIE Web App Summit,38,Des
7、ign Principle 4: Instant gratification,Provide personalized recommendations as soon as a user provides some input Pandora: one song instant radio station Spotback: one article rating instant articles of interest Note: need lots of user data for this to work well (cold start problem emerges again?),U
8、IE Web App Summit,39,Design Principle 5: Cultivate user independence,Prevent mobs, optimize the “wisdom of crowds”,UIE Web App Summit,40,Cultivating wise crowds,Four conditions Cognitive Diversity Independence Decentralization Easy Aggregation,UIE Web App Summit,41,Design Principle 6: Provide access
9、 to long tail, keep content fast moving,Make “l(fā)ong tail” accessible Recommend lots of different stuff (not just most popular) Top 100 lists Keeps recs from getting stale Use time as a dimension in system design Enable fast movement. Rise to top. Get displaced. e.g., “whats fresh today” e.g., Slidesh
10、are popularity model,UIE Web App Summit,42,Design Principle 7: Expose metadata, make it linkable,Exposing tags and user lists Enable “pivot browsing” Every piece of content should have a unique, easily guessed URL.,UIE Web App Summit,43,Design Principle 8: Provide balance between public methods for adjusting this setting,UIE Web App Summit,46,Things to try at home!,Create an account on Read Emergence, Wisdom of Crowds Play a Multiplayer Online Game (WOW, Second Life) Pla
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度個(gè)人住房按揭貸款擔(dān)保協(xié)議合同版
- 2025年度公司銷售業(yè)務(wù)員協(xié)議書:智能穿戴設(shè)備銷售代理協(xié)議
- 2025年度就業(yè)協(xié)議違約金賠償與就業(yè)心理調(diào)適協(xié)議
- 2025年度綠色環(huán)保材料研發(fā)股東合作協(xié)議書
- 2025年度停車場(chǎng)停車費(fèi)電子支付服務(wù)合同
- 2025年度建設(shè)銀行個(gè)人住房貸款合同電子版
- 2025年度不銹鋼欄桿項(xiàng)目風(fēng)險(xiǎn)評(píng)估與管理合同
- 農(nóng)資裝卸搬運(yùn)服務(wù)協(xié)議
- 2025年度農(nóng)村土地經(jīng)營(yíng)權(quán)轉(zhuǎn)讓與農(nóng)業(yè)扶貧項(xiàng)目合作合同
- 二零二五年度土地承包種植與鄉(xiāng)村旅游結(jié)合合同
- 廉潔應(yīng)征承諾書
- 次聲波在臨床醫(yī)學(xué)及麻醉中的作用 次聲波在臨床麻醉中的作用
- 加盟招商方案PPT模板
- 中石油HSE培訓(xùn)試題集(共33頁)
- 2022年云南省中考數(shù)學(xué)試題及答案解析
- 噴(烤)漆房VOCs治理設(shè)施日常運(yùn)行臺(tái)賬
- TS16949五大工具:SPC
- 五年級(jí)下冊(cè)-綜合實(shí)踐教案
- 貴州出版社小學(xué)五年級(jí)下冊(cè)綜合實(shí)踐活動(dòng)教案全冊(cè)
- [方案]隱框玻璃幕墻施工方案
- 設(shè)備安裝檢驗(yàn)批表格
評(píng)論
0/150
提交評(píng)論